首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stromal cell (MSC) therapies have been pursued for a broad spectrum of indications but mixed reports on clinical efficacy have given rise to some degree of skepticism regarding the effectiveness of this approach. However, recent reports of successful clinical outcomes and regulatory approvals for graft-versus-host disease, Crohn's disease and critical limb ischemia have prompted a shift in this perspective. With hundreds of clinical trials involving MSCs currently underway and an increasing demand for large-scale manufacturing protocols, there is a critical need to develop standards that can be applied to processing methods and to establish consensus assays for both MSC processing control and MSC product release. Reference materials and validated, uniformly applied tests for quality control of MSC products are needed. Here, we review recent developments in MSC manufacturing technologies, release testing and potency assays. We conclude that, although MSCs hold considerable promise clinically, economies of scale have yet to be achieved although numerous bioreactor technologies for scalable production of MSCs exist. Additionally, rigorous disease-specific product testing and comprehensive understanding of mechanisms of action, which are linked to relevant process and product release potency assays, will be required to ensure that these therapies continue to be successful.  相似文献   

2.
Khan IA 《Life sciences》2006,78(18):2033-2038
Herbal product studies cannot be considered scientifically valid if the product tested was not authenticated and characterized in order to ensure reproducibility in the manufacturing of the product in question. Many studies refer to the use of standardized material, but in reality they are referring to chemical standardization. While chemical standardization is important, its utility is limited when the starting material is not well characterized botanically. Although the resulting studies are sound with respect to the actual product tested, adequate authentication of the product cannot be compared to other products on the market. Also, a comparison of one study to another cannot be made due to inconsistencies in the identity of the botanical matrix. The tools needed for authentication of the field plant material also depend on the plant and process involved. This could be as straightforward as botanical/morphological identification or as elaborate as genetic or chemical profiling. Authenticated raw material is the basic starting point for the development of a botanical product. However, harvesting, storing, processing and formulating methods may dramatically affect the quality and consistency of the final product by altering the desired marker components or by increasing the possibility of unwanted contaminants. Thus, validated methods to ensure quality control in manufacturing and storage are required tools for optimal efficacy and safety of the products. These controls are also critical for the evaluation of pharmacological, toxicological and clinical studies of the botanical supplements.  相似文献   

3.
The evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created. The primary objective of a potency assay is to provide a mechanism by which the manufacturing process and the final product for batch release are scrutinized for quality, consistency and stability. A potency assay also provides the basis for comparability assessment after process changes, such as scale-up, site transfer and new starting materials (e.g., a new donor). Potency assays should be in place for early clinical development, and validated assays are required for pivotal clinical trials. Potency is based on the individual characteristics of each individual CTP, and the adequacy of potency assays will be evaluated on a case-by-case basis by regulatory agencies. We provide an overview of the expectations and challenges in development of potency assays specific for CTPs; several real-life experiences from the cellular therapy industry are presented as illustrations. The key observation and message is that aggressive early investment in a solid potency evaluation strategy can greatly enhance eventual CTP deployment because it can mitigate the risk of costly product failure in late-stage development.  相似文献   

4.
In May 2012, Health Canada and other participants held a National Summit on Subsequent Entry Biologics (SEBs). Health Canada released a guidance document in March 2010 describing policy positions and data requirements for approval of SEBs. While Health Canada and health agencies in other regulatory jurisdictions are aligned on many scientific principles related to biosimilar drugs, Health Canada's specific requirements may not be widely understood by many Canadian stakeholders. The Summit provided an opportunity for education and dialog among physicians who prescribe biologics, provincial payers, and industry on the following topics: preclinical and clinical comparability studies; manufacturing and other product differences; extrapolation of indications; substitution and interchangeability of SEBs with reference biologic drugs in clinical practice; payers' current perspective; pharmacovigilance and naming. It is anticipated that the consensus reached at this meeting will further educate Canadian healthcare professionals, provincial payers, and insurers about the appropriate use of SEBs, and may be of general interest to others internationally.  相似文献   

5.
Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production‐process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1139–1149, 2015  相似文献   

6.
The routine production of protein pharmaceuticals in large amounts has provided new challenges to the analytical chemist. In particular, the determination of protein purity is a complex problem dependent on the structural characteristics and spectrum of potential impurities of the product. The resulting purity determination is only as accurate and complete as the analytical methods used. Through the selection of appropriate methods, an analytical testing strategy to ensure product consistency and purity can be developed. This paper reviews strategies for the purity determination of protein pharmaceuticals using recombinant tissue plasminogen activator as an example.  相似文献   

7.
Dendritic cells (DCs) are key connectors between the innate and adaptive immune system and have an important role in modulating other immune cells. Therefore, their therapeutic application to steer immune responses is considered in various disorders, including cancer. Due to differences in the cell source and manufacturing process, each DC medicinal product is unique. Consequently, release tests to ensure consistent quality need to be product-specific.Although general guidance concerning quality control testing of cell-based therapies is available, cell type-specific regulation is still limited. Especially guidance related to potency testing is needed, because developing an in vitro assay measuring cell properties relevant for in vivo functionality is challenging. In this review, we provide DC-specific guidance for development of in vitro potency assays for characterisation and release. We present a broad overview of in vitro potency assays suggested for DC products to determine their anti-tumor functionality. Several advantages and limitations of these assays are discussed. Also, we provide some points to consider for selection and design of a potency test. The ideal functionality assay for anti-tumor products evaluates the capacity of DCs to stimulate antigen-specific T cells. Because this approach may not be feasible for release, use of surrogate potency markers could be considered, provided that these markers are sufficiently linked to the in vivo DC biological activity and clinical response. Further elucidation of the involvement of specific DC subsets in anti-tumor responses will result in improved manufacturing processes for DC-based products and should be considered during potency assay development.  相似文献   

8.
Any biopharmaceutical product that has involved the use of animal-derived material during the manufacturing process has the potential to be contaminated with animal viruses. To ensure safety of these products, extensive testing is performed on the starting materials, such as the cell banks, and on the raw materials used in manufacture. Additional testing is also performed at various stages of production and, in some cases, on the final product as well. Because of inherent limitations in direct testing methods, the capacity of the downstream purification process to remove/inactivate potential viral contaminants is also studied to give an extra degree of assurance that the final product will be free of infectious viruses.  相似文献   

9.
Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.KEY WORDS: biologics, manufacturing technology, quality risk management, regulatory science, single-use system  相似文献   

10.
《Cytotherapy》2022,24(11):1136-1147
Background aimsCell therapies have emerged as a potentially transformative therapeutic modality in many chronic and incurable diseases. However, inherent donor and patient variabilities, complex manufacturing processes, lack of well-defined critical quality attributes and unavailability of in-line or at-line process or product analytical technologies result in significant variance in cell product quality and clinical trial outcomes. New approaches for overcoming these challenges are needed to realize the potential of cell therapies.MethodsHere the authors developed an untargeted two-dimensional gas chromatography mass spectrometry (GC×GC-MS)-based method for non-destructive longitudinal at-line monitoring of cells during manufacturing to discover correlative volatile biomarkers of cell proliferation and end product potency.ResultsSpecifically, using mesenchymal stromal cell cultures as a model, the authors demonstrated that GC×GC-MS of the culture medium headspace can effectively discriminate between media types and tissue sources. Headspace GC×GC-MS identified specific volatile compounds that showed a strong correlation with cell expansion and product functionality quantified by indoleamine-2,3-dioxygenase and T-cell proliferation/suppression assays. Additionally, the authors discovered increases in specific volatile metabolites when cells were treated with inflammatory stimulation.ConclusionsThis work establishes GC×GC-MS as an at-line process analytical technology for cell manufacturing that could improve culture robustness and may be used to non-destructively monitor culture state and correlate with end product function.  相似文献   

11.
《MABS-AUSTIN》2013,5(6):761-774
Because of rapidly increasing market demand and rising cost pressure, the innovator of etanercept (Enbrel®) will inevitably face competition from biosimilar versions of the product. In this study, to elucidate the differences between the reference etanercept and its biosimilars, we characterized and compared the quality attributes of two commercially available, biosimilar TNF receptor 2-Fc fusion protein products. Biosimilar 1 showed high similarity to Enbrel® in critical quality attributes including peptide mapping, intact mass, charge variant, purity, glycosylation and bioactivity. In contrast, the intact mass and MS/MS analysis of biosimilar 2 revealed a mass difference indicative of a two amino acid residue variance in the heavy chain (Fc) sequences. Comprehensive glycosylation profiling confirmed that biosimilar 2 has significantly low sialylated N-oligosaccharides. Biosimilar 2 also displayed significant differences in charge attributes compared with the reference product. Interestingly, biosimilar 2 exhibited similar affinity and bioactivity levels compared with the reference product despite the obvious difference in primary structure and partial physiochemical properties. For a biosimilar development program, comparative analytical data can influence decisions about the type and amount of animal and clinical data needed to demonstrate biosimilarity. Because of the limited clinical experience with biosimilars at the time of their approval, a thorough knowledge surrounding biosimilars and a case-by-case approach are needed to ensure the appropriate use of these products.  相似文献   

12.
Because of rapidly increasing market demand and rising cost pressure, the innovator of etanercept (Enbrel®) will inevitably face competition from biosimilar versions of the product. In this study, to elucidate the differences between the reference etanercept and its biosimilars, we characterized and compared the quality attributes of two commercially available, biosimilar TNF receptor 2-Fc fusion protein products. Biosimilar 1 showed high similarity to Enbrel® in critical quality attributes including peptide mapping, intact mass, charge variant, purity, glycosylation and bioactivity. In contrast, the intact mass and MS/MS analysis of biosimilar 2 revealed a mass difference indicative of a two amino acid residue variance in the heavy chain (Fc) sequences. Comprehensive glycosylation profiling confirmed that biosimilar 2 has significantly low sialylated N-oligosaccharides. Biosimilar 2 also displayed significant differences in charge attributes compared with the reference product. Interestingly, biosimilar 2 exhibited similar affinity and bioactivity levels compared with the reference product despite the obvious difference in primary structure and partial physiochemical properties. For a biosimilar development program, comparative analytical data can influence decisions about the type and amount of animal and clinical data needed to demonstrate biosimilarity. Because of the limited clinical experience with biosimilars at the time of their approval, a thorough knowledge surrounding biosimilars and a case-by-case approach are needed to ensure the appropriate use of these products.  相似文献   

13.
M. Mascini  S. Tombelli 《Biomarkers》2013,18(7-8):637-657
At present, most biomarker testing is taking place at centralised dedicated laboratories using large, automated analysers, increasing waiting time and costs. Smaller, faster and cheaper devices are highly desired for replacing these time-consuming laboratory analyses and for making analytical results available at the patient's bedside (point-of-care diagnostics). Innovative biosensor-based strategies could allow biomarkers to be tested reliably in a decentralised setting, although several challenges and limitations remain, which need to be improved, in the design and application of biosensors for the appropriate interpretation of the identified and quantified biomarkers. The development of biosensors is probably one of the most promising ways to solve some of the problems concerning the increasing need to develop highly sensitive, fast and economic methods of analysis in medical diagnostics. In this review, some consideration will be given to biosensors and their application in medical diagnostics, taking into account several crucial features.  相似文献   

14.
Riley BS  Li X 《AAPS PharmSciTech》2011,12(1):114-118
Quality by design (QbD) and process analytical technology (PAT) have become priorities for the Center for Drug Evaluation and Research (CDER) at the Food and Drug Administration (FDA). Numerous recent initiatives within CDER and FDA have had the objective of encouraging the pharmaceutical industry to utilize QbD and PAT in their product development and manufacturing processes. Although sterile products may be a minority compared to non-sterile dosage forms (e.g., solid orals), their absolute requirement for sterility make design and control of the manufacturing processes extremely critical. This emphasis on the manufacturing process makes the sterile drug product an obvious target for QbD and PAT. Although the FDA encourages QbD submissions, the utilization of QbD and PAT for sterile products so far is still limited. This paper will examine the present state of QbD and PAT for sterile products and review some examples currently in use. Additional potential applications of QbD and PAT for sterile product development and manufacturing will also be discussed.  相似文献   

15.
The adaptive immune system is known to play an important role in anti-neoplastic responses via induction of several effector pathways, resulting in tumor cell death. Because of their ability to specifically recognize and kill tumor cells, the potential use of autologous tumor-derived and genetically engineered T cells as adoptive immunotherapy for cancer is currently being explored. Because of the variety of potential T cell-based medicinal products at the level of starting material and manufacturing process, product-specific functionality assays are needed to ensure quality for individual products. In this review, we provide an overview of in vitro potency assays suggested for characterization and release of different T cell-based anti-tumor products. We discuss functional assays, as presented in scientific advices and literature, highlighting specific advantages and limitations of the various assays. Because the anticipated in vivo mechanism of action for anti-tumor T cells involves tumor recognition and cell death, in vitro potency assays based on the cytotoxic potential of antigen-specific T cells are most evident. However, assays based on other T cell properties may be appropriate as surrogates for cytotoxicity. For all proposed assays, biological relevance of the tests and correlation of the read-outs with in vivo functionality need to be substantiated with sufficient product-specific (non-)clinical data. Moreover, further unraveling the complex interaction of immune cells with and within the tumor environment is expected to lead to further improvement of the T cell-based products. Consequently, increased knowledge will allow further optimized guidance for potency assay development.  相似文献   

16.
Massively parallel sequencing has reduced the cost and increased the throughput of genomic sequencing by more than three orders of magnitude, and it seems likely that costs will fall and throughput improve even more in the next few years. Clinical use of massively parallel sequencing will provide a way to identify the cause of many diseases of unknown etiology through simultaneous screening of thousands of loci for pathogenic mutations and by sequencing biological specimens for the genomic signatures of novel infectious agents. In addition to providing these entirely new diagnostic capabilities, massively parallel sequencing may also replace arrays and Sanger sequencing in clinical applications where they are currently being used.Routine clinical use of massively parallel sequencing will require higher accuracy, better ways to select genomic subsets of interest, and improvements in the functionality, speed, and ease of use of data analysis software. In addition, substantial enhancements in laboratory computer infrastructure, data storage, and data transfer capacity will be needed to handle the extremely large data sets produced. Clinicians and laboratory personnel will require training to use the sequence data effectively, and appropriate methods will need to be developed to deal with the incidental discovery of pathogenic mutations and variants of uncertain clinical significance. Massively parallel sequencing has the potential to transform the practice of medical genetics and related fields, but the vast amount of personal genomic data produced will increase the responsibility of geneticists to ensure that the information obtained is used in a medically and socially responsible manner.  相似文献   

17.
The limitations of genome-wide association (GWA) studies that focus on the phenotypic influence of common genetic variants have motivated human geneticists to consider the contribution of rare variants to phenotypic expression. The increasing availability of high-throughput sequencing technologies has enabled studies of rare variants but these methods will not be sufficient for their success as appropriate analytical methods are also needed. We consider data analysis approaches to testing associations between a phenotype and collections of rare variants in a defined genomic region or set of regions. Ultimately, although a wide variety of analytical approaches exist, more work is needed to refine them and determine their properties and power in different contexts.  相似文献   

18.
Changes in production methods of a biological product may necessitate an assessment of comparability to ensure that these manufacturing changes have not affected the safety, identity, purity, or efficacy of the product. Depending on the nature of the protein or the change, this assessment consists of a hierarchy of sequential tests in analytical testing, preclinical animal studies and clinical studies. Differences in analytical test results between pre- and post-change products may require functional testing to establish the biological or clinical significance of the observed difference. An underlying principle of comparability is that under certain conditions, protein products may be considered comparable on the basis of analytical testing results alone. However, the ability to compare biological materials is solely dependent on the tests used, since no single analytical method is able to compare every aspect of protein structure or function. The advantages and disadvantages of any given method depends on the protein property being characterized.  相似文献   

19.
Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.  相似文献   

20.
Rapid increase in the use of numerical techniques to predict current density or specific absorption rate (SAR) in sophisticated three dimensional anatomical computer models of man and animals has resulted in the need to understand how numerical solutions of the complex electrodynamics equations match with empirical measurements. This aspect is particularly important because different numerical codes and computer models are used in research settings as a guide in designing clinical devices, telecommunication systems, and safety standards. To ensure compliance with safety guidelines during equipment design, manufacturing and maintenance, realistic and accurate models could be used as a bridge between empirical data and actual exposure conditions. Before these tools are transitioned into the hands of health safety officers and system designers, their accuracy and limitations must be verified under a variety of exposure conditions using available analytical and empirical dosimetry techniques. In this paper, empirical validation of SAR values predicted by finite difference time domain (FDTD) numerical code on sphere and rat is presented. The results of this study show a good agreement between empirical and theoretical methods and, thus, offer a relatively high confidence in SAR predictions obtained from digital anatomical models based on the FDTD numerical code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号