首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.  相似文献   

2.
3.

Background

Detection of congenital T. cruzi transmission is considered one of the pillars of control programs of Chagas disease. Congenital transmission accounts for 25% of new infections with an estimated 15,000 infected infants per year. Current programs to detect congenital Chagas disease in Latin America utilize microscopy early in life and serology after 6 months. These programs suffer from low sensitivity by microscopy and high loss to follow-up later in infancy. We developed a Chagas urine nanoparticle test (Chunap) to concentrate, preserve and detect T. cruzi antigens in urine for early, non-invasive diagnosis of congenital Chagas disease.

Methodology/Principal Findings

This is a proof-of-concept study of Chunap for the early diagnosis of congenital Chagas disease. Poly N-isopropylacrylamide nano-particles functionalized with trypan blue were synthesized by precipitation polymerization and characterized with photon correlation spectroscopy. We evaluated the ability of the nanoparticles to capture, concentrate and preserve T. cruzi antigens. Urine samples from congenitally infected and uninfected infants were then concentrated using these nanoparticles. The antigens were eluted and detected by Western Blot using a monoclonal antibody against T. cruzi lipophosphoglycan. The nanoparticles concentrate T. cruzi antigens by 100 fold (western blot detection limit decreased from 50 ng/ml to 0.5 ng/ml). The sensitivity of Chunap in a single specimen at one month of age was 91.3% (21/23, 95% CI: 71.92%–98.68%), comparable to PCR in two specimens at 0 and 1 month (91.3%) and significantly higher than microscopy in two specimens (34.8%, 95% CI: 16.42%–57.26%). Chunap specificity was 96.5% (71/74 endemic, 12/12 non-endemic specimens). Particle-sequestered T. cruzi antigens were protected from trypsin digestion.

Conclusion/Significance

Chunap has the potential to be developed into a simple and sensitive test for the early diagnosis of congenital Chagas disease.  相似文献   

4.

Background

New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi.

Methods and Findings

We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses.

Conclusions

Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazole-susceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD.  相似文献   

5.
6.
Heat shock proteins have been implicated as endogenous activators for dendritic cells (DCs). Chronic expression of heat shock protein gp96 on cell surfaces induces significant DC activations and systemic lupus erythematosus (SLE)-like phenotypes in mice. However, its potential as a therapeutic target against SLE remains to be evaluated. In this work, we conducted chemical approach to determine whether SLE-like phenotypes can be compromised by controlling surface translocation of gp96. From screening of chemical library, we identified a compound that binds and suppresses surface presentation of gp96 by facilitating its oligomerization and retrograde transport to endoplasmic reticulum. In vivo administration of this compound reduced maturation of DCs, populations of antigen presenting cells, and activated B and T cells. The chemical treatment also alleviated the SLE-associated symptoms such as glomerulonephritis, proteinuria, and accumulation of anti-nuclear and –DNA antibodies in the SLE model mice resulting from chronic surface exposure of gp96. These results suggest that surface translocation of gp96 can be chemically controlled and gp96 as a potential therapeutic target to treat autoimmune disease like SLE.  相似文献   

7.
The mevalonate pathway is essential in eukaryotes and responsible for a diversity of fundamental synthetic activities. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme in the pathway and is targeted by the ubiquitous statin drugs to treat hypercholesterolemia. Independent reports have indicated the cidal effects of statins against the flatworm parasite, S. mansoni, and the possibility that SmHMGR is a useful drug target to develop new statin-based anti-schistosome therapies. For six commercially available statins, we demonstrate concentration- and time-dependent killing of immature (somule) and adult S. mansoni in vitro at sub-micromolar and micromolar concentrations, respectively. Cidal activity trends with statin lipophilicity whereby simvastatin and pravastatin are the most and least active, respectively. Worm death is preventable by excess mevalonate, the product of HMGR. Statin activity against somules was quantified both manually and automatically using a new, machine learning-based automated algorithm with congruent results. In addition, to chemical targeting, RNA interference (RNAi) of HMGR also kills somules in vitro and, again, lethality is blocked by excess mevalonate. Further, RNAi of HMGR of somules in vitro subsequently limits parasite survival in a mouse model of infection by up to 80%. Parasite death, either via statins or specific RNAi of HMGR, is associated with activation of apoptotic caspase activity. Together, our genetic and chemical data confirm that S. mansoni HMGR is an essential gene and the relevant target of statin drugs. We discuss our findings in context of a potential drug development program and the desired product profile for a new schistosomiasis drug.  相似文献   

8.
肿瘤化学治疗是目前抗肿瘤治疗最常用且最有效的方法,而在肿瘤化疗过程中出现的多药耐药现象,是导致治疗失败的主要原因.肿瘤多药耐药由多种机制共同作用而成,其中由酶类介导的多药耐药愈显重要.目前的研究发现,有多类细胞色素P450酶与肿瘤多药耐药的发生密切相关.本文着重对近年来有关细胞色素P450与肿瘤多药耐药的相关研究进行阐述,以期为肿瘤治疗提供一个新的方向.  相似文献   

9.
10.
Drug discovery initiatives, aimed at Chagas treatment, have been hampered by the lack of standardized drug screening protocols and the absence of simple pre-clinical assays to evaluate treatment efficacy in animal models. In this study, we used a simple Enzyme Linked Aptamer (ELA) assay to detect T. cruzi biomarker in blood and validate murine drug discovery models of Chagas disease. In two mice models, Apt-29 ELA assay demonstrated that biomarker levels were significantly higher in the infected group compared to the control group, and upon Benznidazole treatment, their levels reduced. However, biomarker levels in the infected treated group did not reduce to those seen in the non-infected treated group, with 100% of the mice above the assay cutoff, suggesting that parasitemia was reduced but cure was not achieved. The ELA assay was capable of detecting circulating biomarkers in mice infected with various strains of T. cruzi parasites. Our results showed that the ELA assay could detect residual parasitemia in treated mice by providing an overall picture of the infection in the host. They suggest that the ELA assay can be used in drug discovery applications to assess treatment efficacy in-vivo.  相似文献   

11.

Background

Chagas disease is due to the parasite Trypanosoma cruzi, a protist disseminated by a Triatome vector. This disease is endemic to Latin America and considered by WHO as one of the 17 world’s neglected diseases. In Europe and in North America, imported cases are also detected, due to migration of population outside of the endemic region. Diagnosis of T. cruzi infection is usually made indirectly by the detection of specific antibodies to T. cruzi antigens. Following initial diagnostic evaluation or screening test (qualifying or discarding blood donation), a confirmation test is performed for samples initially reactive. The test presented in this study aims at the confirmation/refutation of the infectious status of human blood samples and will permit taking appropriate clinical measures.

Methodology/Principal Findings

We designed a novel array of twelve antigens and printed these antigens onto 96-well plates. We tested 248 positive samples T. cruzi, 94 unscreened blood donors’ samples from non-endemic area, 49 seronegative blood donors, 7 false-positive and 3 doubtful samples. The observed reactivities were analyzed to propose a decision-tree algorithm that correctly classifies all the samples, with the potential to discriminate false-positive results and sticky samples. We observed that antibodies levels (Sum of all antigens) was significantly higher for PCR positive than for PCR negative samples in all studied groups with Multi-cruzi.

Conclusion/Significance

The results described in this study indicate that the Multi-cruzi improves the serological confirmation of Chagas disease. Moreover the “sum of all antigens” detected by Multi-cruzi could reflect parasitemia level in patients–like PCR signals does—and could serve as an indicator of parasite clearance in longitudinal follow-ups. Validation of this assay is still required on an independent large collection of well characterized samples including typical false-reactive samples such as Leishmaniasis.  相似文献   

12.
There is a clear need for agents with novel mechanisms of action to provide new therapeutic approaches for the treatment of pancreatic cancer. Owing to its structural similarity to l-arginine, l-canavanine, the δ-oxa-analog of l-arginine, is a substrate for arginyl tRNA synthetase and is incorporated into nascent proteins in place of l-arginine. Although l-arginine and l-canavanine are structurally similar, the oxyguanidino group of l-canavanine is significantly less basic than the guanidino group of l-arginine. Consequently, l-canavanyl proteins lack the capacity to form crucial ionic interactions, resulting in altered protein structure and function, which leads to cellular death. Since l-canavanine is selectively sequestered by the pancreas, it may be especially useful as an adjuvant therapy in the treatment of pancreatic cancer. This novel mechanism of cytotoxicity forms the basis for the anticancer activity of l-canavanine and thus, arginyl tRNA synthetase may represent a novel target for the development of such therapeutic agents.  相似文献   

13.
A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.  相似文献   

14.
Erythroid enucleation is critical for terminal differentiation of red blood cells, and involves extrusion of the nucleus by orthochromatic erythroblasts to produce reticulocytes. Due to the difficulty of synchronizing erythroblasts, the molecular mechanisms underlying the enucleation process remain poorly understood. To elucidate the cellular program governing enucleation, we utilized a novel chemical screening approach whereby orthochromatic cells primed for enucleation were enriched ex vivo and subjected to a functional drug screen using a 324 compound library consisting of structurally diverse, medicinally active and cell permeable drugs. Using this approach, we have confirmed the role of HDACs, proteasomal regulators and MAPK in erythroid enucleation and introduce a new role for Cyclin-dependent kinases, in particular CDK9, in this process. Importantly, we demonstrate that when coupled with imaging analysis, this approach provides a powerful means to identify and characterize rate limiting steps involved in the erythroid enucleation process.  相似文献   

15.
16.
17.

Background

Inherited cardiac conduction diseases (CCD) are rare but are caused by mutations in a myriad of genes. Recently, whole-exome sequencing has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases.

Objective

To investigate the genetic background of a family affected by inherited CCD.

Methods and Results

We used whole-exome sequencing to study a Chinese family with multiple family members affected by CCD. Using the pedigree information, we proposed a heterozygous missense mutation (c.G695T, Gly232Val) in the lamin A/C (LMNA) gene as a candidate mutation for susceptibility to CCD in this family. The mutation is novel and is expected to affect the conformation of the coiled-coil rod domain of LMNA according to a structural model prediction. Its pathogenicity in lamina instability was further verified by expressing the mutation in a cellular model.

Conclusions

Our results suggest that whole-exome sequencing is a feasible approach to identifying the candidate genes underlying inherited conduction diseases.  相似文献   

18.

Background

According to World Health Organization (WHO) prevalence estimates, 1.1 million people in Mexico are infected with Trypanosoma cruzi, the etiologic agent of Chagas disease (CD). However, limited information is available about access to antitrypanosomal treatment. This study assesses the extent of access in Mexico, analyzes the barriers to access, and suggests strategies to overcome them.

Methods and Findings

Semi-structured in-depth interviews were conducted with 18 key informants and policymakers at the national level in Mexico. Data on CD cases, relevant policy documents and interview data were analyzed using the Flagship Framework for Pharmaceutical Policy Reform policy interventions: regulation, financing, payment, organization, and persuasion. Data showed that 3,013 cases were registered nationally from 2007–2011, representing 0.41% of total expected cases based on Mexico''s national prevalence estimate. In four of five years, new registered cases were below national targets by 11–36%. Of 1,329 cases registered nationally in 2010–2011, 834 received treatment, 120 were pending treatment as of January 2012, and the treatment status of 375 was unknown. The analysis revealed that the national program mainly coordinated donation of nifurtimox and that important obstacles to access include the exclusion of antitrypanosomal medicines from the national formulary (regulation), historical exclusion of CD from the social insurance package (organization), absence of national clinical guidelines (organization), and limited provider awareness (persuasion).

Conclusions

Efforts to treat CD in Mexico indicate an increased commitment to addressing this disease. Access to treatment could be advanced by improving the importation process for antitrypanosomal medicines and adding them to the national formulary, increasing education for healthcare providers, and strengthening clinical guidelines. These recommendations have important implications for other countries in the region with similar problems in access to treatment for CD.  相似文献   

19.
死亡相关蛋白激酶(DAPK)是一种新的钙调蛋白(CaM)调节的丝/苏氨酸激酶,是凋亡的正性调节因子。细胞凋亡被认为是控制和治疗肿瘤的最有效方法之一,它与肿瘤的发生、发展和转移有着密切的联系。而DAPK参与多条途径诱导的细胞凋亡,被公认为是一种肿瘤抑制基因。在此我们将重点讨论DAPK促进细胞凋亡的机制,为靶向治疗肿瘤提供方向和理论依据。  相似文献   

20.

Background

Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes.

Methodology/Principal Findings

Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer.

Conclusions/Significance

Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号