首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cell death is a scheduled event during animal development and tissue turnover. Here, we affirm the presence of two major pathways of programmed cell death (PCD), viz. apoptotic and autophagic cell death, in the disintegrated pupal perivisceral (PV) fat body during pupal-adult metamorphosis. The acridine orange (a vital stain for apoptosis) staining pattern and DNA fragmentation assay have revealed the exact day (6th day of the pupal stage) of disintegration in the PV fat body as represented by chromatin condensation and DNA laddering. Electron microscopy and scanning electron microscopy have demonstrated the presence of cytoplasmic budding and giant autophagic vacuoles and the low numbers of mitochondria, all of which are attributes of autophagic cell death. Immunoblot analysis of proteosomal subunits 20S and 26S has established the involvement of proteolytic activity during PCD of PV tissue. Lysosomal participation during the PCD of PV tissues has been confirmed by the elevated level of the marker enzyme, acid phosphatase, which is distinct on day 6 of the pupal period. The results of the present study have thus ascertained the co-existence of both autophagic and apoptotic cell death in PV fat body tissue.  相似文献   

2.
刘影  刘韩菡  李胜 《昆虫知识》2009,46(5):673-677
程序化细胞死亡(programmed cell death,PCD)分为I型PCD细胞凋亡(apoptosis)和II型PCD细胞自噬(autophagy)。果蝇等完全变态昆虫有2种类型的器官:即细胞内分裂器官(如脂肪体、表皮、唾液腺、中肠、马氏管等)和有丝分裂器官(复眼、翅膀、足、神经系统等)。在昆虫变态过程中,细胞内分裂器官进行器官重建,幼虫器官大量发生细胞凋亡和细胞自噬到最后完全消亡,同时成虫器官由干细胞从新生成;而有丝分裂器官则由幼虫器官直接发育为成虫器官。在果蝇等昆虫的变态过程中,细胞凋亡和细胞自噬在幼虫器官的死亡和成虫器官的生成中发挥了非常重要的作用。文章简要介绍细胞凋亡和细胞自噬在果蝇变态过程中的生理功能和分子调控机制。  相似文献   

3.
The prothoracic glands of the tobacco hornworm, Manduca sexta, secrete the precursor of the insect molting hormone and normally undergo programmed cell death (PCD) during pupal-adult metamorphosis, between days 5 and 6 after pupation. This phenomenon can be elicited prematurely in vitro by the addition of 20-hydroxyecdysone (20E) to the gland cultures. To induce nuclear condensation in vitro in the glands from day-1 pupae, the effective dose range of 20E is 0.7-7 micrograms/ml and the minimum exposure period is 24 h. Prothoracic glands from different stages of pupal-adult development express different responsiveness to exogenous ecdysteroids. By utilizing terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) and the apoptotic DNA laddering method together with transmission electron microscopy, it has been demonstrated that the ecdysteroid-induced cell death of the prothoracic glands occurs via not only apoptosis but also autophagy, i.e., the induced dying cells show both severe nuclear fragmentation and autophagic vacuole formation, characteristics typical of apoptotic and autophagic cell death. The composite data indicate that ecdysteroids regulate directly both apoptotic and autophagic mechanisms of PCD of the prothoracic glands.  相似文献   

4.
5.
Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real‐time observations, morphological analysis, glycogen detection, filamentous‐actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.  相似文献   

6.
Caspases function in autophagic programmed cell death in Drosophila   总被引:9,自引:0,他引:9  
Self-digestion of cytoplasmic components is the hallmark of autophagic programmed cell death. This auto-degradation appears to be distinct from what occurs in apoptotic cells that are engulfed and digested by phagocytes. Although much is known about apoptosis, far less is known about the mechanisms that regulate autophagic cell death. Here we show that autophagic cell death is regulated by steroid activation of caspases in Drosophila salivary glands. Salivary glands exhibit some morphological changes that are similar to apoptotic cells, including fragmentation of the cytoplasm, but do not appear to use phagocytes in their degradation. Changes in the levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin and nuclear Lamins precede salivary gland destruction, and coincide with increased levels of active Caspase 3 and a cleaved form of nuclear Lamin. Mutations in the steroid-regulated genes beta FTZ-F1, E93, BR-C and E74A that prevent salivary gland cell death possess altered levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin, nuclear Lamins and active Caspase 3. Inhibition of caspases, by expression of either the caspase inhibitor p35 or a dominant-negative form of the initiator caspase Dronc, is sufficient to inhibit salivary gland cell death, and prevent changes in nuclear Lamins and alpha-Tubulin, but not to prevent the reorganization of filamentous Actin. These studies suggest that aspects of the cytoskeleton may be required for changes in dying salivary glands. Furthermore, caspases are not only used during apoptosis, but also function in the regulation of autophagic cell death.  相似文献   

7.
Labial glands of the tobacco hornworm Manduca sexta (Lepidoptera: Sphingiidae), homologues of Drosophila salivary glands, undergo programmed cell death (PCD) in a 4-day period during larva-to-pupa metamorphosis. The programmed death of the labial gland was examined by electron microscopy and measurement of protein synthesis as well as measurement of DNA synthesis, end-labeling of single strand breaks, and pulsed-field gel electrophoresis. One of the earliest changes observed is a sharp drop in synthesis of most proteins, coupled with synthesis of a glycine-rich protein, reminiscent of silk-like proteins. From a morphological standpoint, during the earliest phases the most prominent changes are the formation of small autophagic vacuoles containing ribosomes and an apparent focal dissolution of the membranes of the endoplasmic reticulum, whereas later changes include differing destruction at the lumenal and basal surfaces of the cell and erosion of the basement membrane. By the fourth day of metamorphosis, individual cells become rapidly vacuolated in a cell-independent manner. In the vacuolated cells on day 3, chromatin begins to coalesce. It is at this period that unequivocal nucleosomal ladders are seen and end-labeling in situ or electrophoretic techniques document single or double-strand breaks, respectively. DNA synthesis ceases shortly after the molt to the fifth instar, as detected by incorporation of tritiated thymidine and weak TUNEL labeling. Large size fragments of DNA are seen shortly after DNA synthesis ceases and thence throughout the instar, raising the possibility of potential limitations built into the cells before their final collapse. Dev. Genet. 21:249–257, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Two major pathways of programmed cell death (PCD)--the apoptotic and the autophagic cell death--were investigated in the decomposition process of the larval fat body during the 5th larval stage of Manduca sexta. Several basic aspects of apoptotic and autophagic cell death were analyzed by morphological and biochemical methods in order to disclose whether these mechanisms do have shared common regulatory steps. Morphological examination revealed the definite autophagic wave started on day 4 followed by DNA fragmentation as demonstrated by agarose gel electrophoresis and TUNEL assay. By the end of the wandering period the cells were filled with autophagic vacuoles and protein granules of heterophagic origin and the vast majority of the nuclei were TUNEL-positive. No evidence was found of other aspects of apoptosis, e.g. activation of executioner caspases. Close correlation was disclosed between the onset of autophagy and the nuclear accumulation of the ubiquitin-proteasome system.  相似文献   

9.
Kanao T  Miyachi Y 《Mutation research》2006,595(1-2):60-68
We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion.  相似文献   

10.
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.Key words: autophagy, Draper, programmed cell death, engulfment, developmentProgrammed cell death is required for animal development and tissue homeostasis. Improper cell death leads to pathologies including autoimmunity and cancer. Several morphological forms of cell death occur during animal development, including apoptosis and autophagic cell death. Autophagic cell death is characterized by the presence of autophagosomes in dying cells that are not known to be engulfed by phagocytes. Autophagic cell death is observed during several types of mammalian developmental cell death, including regression of the corpus luteum and involution of mammary and prostate glands.During macroautophagy (autophagy), cytoplasmic components are sequestered by autophagosomes and delivered to the lysosome for degradation. Autophagy is a cellular response to stress required for survival in response to starvation. Whereas autophagy has been associated with cell death, it is unknown how autophagy is distinguished during cell death and cell survival. Autophagy is induced in Drosophila in response to starvation in the fat body where it promotes cell survival, while autophagy is induced by the steroid hormone ecdysone in salivary glands where it promotes cell death. This allows studies of autophagy in different cell types and in response to different stimuli.Drosophila larval salivary glands die with autophagic cell death morphology and autophagy is required for their degradation. Expression of the caspase inhibitor p35 enhances salivary gland persistence in Atg mutants, suggesting that caspases and autophagy function in parallel during salivary gland degradation. Either activation of caspases or Atg1 misexpression is sufficient to induce ectopic salivary gland clearance. We queried genome-wide microarray data from purified dying salivary glands and noted the induction of engulfment genes, those required for a phagocyte to consume and degrade a dying cell. We also noted few detectable changes in engulfment genes in Drosophila larvae during starvation.We found that Drpr, the Drosophila orthologue of C. elegans engulfment receptor CED-1, is enriched in dying salivary glands, and drpr null mutants have persistent salivary glands. Interestingly, whereas knockdown of drpr in phagocytic blood cells fails to influence salivary gland clearance, expression of drpr-RNAi in salivary glands prevents gland clearance. Drosophila drpr is alternatively spliced to produce three isoforms. We found that drpr-I-specific knockdown prevents salivary gland degradation and Drpr-I expression in salivary glands of drpr null mutants rescues salivary gland persistence. Therefore, drpr is autonomously required for salivary gland clearance. However, how Drpr is induced or activated during hormone-regulated cell death remains to be determined.drpr knockdown fails to influence caspase activation, and caspase inhibitor p35 expression in drpr null mutants enhances salivary gland persistence, suggesting that Drpr functions downstream or parallel to caspases in dying salivary glands. Interestingly, we found that drpr knockdown in salivary glands prevents the formation of GFP-LC3 puncta. Further, Atg1 misexpression in salivary glands of drpr null mutants suppresses salivary gland persistence. drpr is therefore required for autophagy induction in salivary glands, and Atg1 functions downstream of Drpr in this tissue. We found that several other engulfment genes are required for salivary gland degradation. However, the Drpr signaling mechanism leading to autophagy induction in salivary glands remains to be elucidated.We tested whether drpr is a general regulator of autophagy. The Drosophila fat body is a nutrient storage and mobilization organ akin to the mammalian liver, and is a well-established model to study starvation-induced autophagy. We found that drpr-RNAi expression in fat body clone cells fails to prevent GFP-Atg8 puncta formation in response to starvation. Similarly, drpr null fat body clone cells form Cherry-Atg8 puncta after starvation. Strikingly, drpr-RNAi expression in salivary gland clone cells inhibits the formation of GFP-Atg8 puncta. Therefore, drpr is cell-autonomously required for autophagy induction in dying salivary gland cells, but not for autophagy induction in fat body cells after starvation. These findings suggest that distinct signaling mechanisms regulate autophagy in response to nutrient deprivation compared to steroid hormone induction. Little is known about what distinguishes autophagy function in cell survival versus death. It is possible that varying levels of autophagy are induced during specific cell contexts and that high levels of autophagy could overwhelm a cell—leading to cell death. Autophagic degradation of specific cargo, such as cell death inhibitors, could also contribute to cell death.Given recent interest in manipulation of autophagy for therapies, it is possible that factors such as Drpr could be used as biomarkers to distinguish autophagy leading to cell death versus cell survival. While it is generally accepted that augmentation of protein clearance by autophagy during neurodegeneration would be beneficial, the role of autophagy in tumor progression is less clear. For example, monoallelic loss of the human Atg6 homolog beclin 1 is prevalent in human cancers, suggesting that autophagy is a tumorsuppressive mechanism. Thus, autophagy enhancers have been proposed for cancer prevention. However, autophagy occurs in tumor cells as a survival mechanism, and autophagy inhibitors have been proposed for anti-cancer therapies. Understanding how autophagy is regulated in different contexts is critical for appropriate therapeutic strategies.  相似文献   

11.
Autophagy, a form of programmed cell death (PCD) that is morphologically distinguished from apoptosis, is thought to be as prevalent as apoptosis, at least during development. In insect metamorphosis, the steroid hormone 20-hydroxyecdysone (ecdysone) activates autophagic PCD to eliminate larval structures that are no longer needed. However, in comparison with apoptosis, there are not many studies on the regulation mechanisms of autophagy. To provide a useful model for studying autophagic PCD, I established an in vitro culture system that enables real-time observation of the autophagic cell destruction of Drosophila salivary glands. The new system revealed that de novo gene expression was still required for the destruction of salivary glands dissected from phanerocephalic pupae. This indicates the usefulness of the system for exploring genes that participate in the last processes of autophagic PCD.Edited by N. Satoh  相似文献   

12.
The major cell death pathways are apoptosis and autophagy-type cell death in Drosophila. Overexpression of proapoptotic genes in developing imaginal tissues leads to the activation of caspases and apoptosis, but most of them show no effect on the polytenic cells of the fat body during the last larval stage. Surprisingly, overexpression of Hid induces caspase-independent autophagy in the fat body, as well as in most other larval tissues tested. Hid mutation results in inhibition of salivary gland cell death, but the disintegration of the larval midgut is not affected. Electron microscopy shows that autophagy is normally induced in fat body, midgut and salivary gland cells of homozygous mutant larvae, suggesting that Hid is not required for autophagy itself. Constitutive expression of the caspase inhibitor p35 produces identical phenotypes. Our results show that the large, post-mitotic larval cells do not react or activate autophagy in response to the same strong apoptotic stimuli that trigger apoptosis in small, mitotically active imaginal disc cells.  相似文献   

13.
Programmed cell death (PCD) is crucial in body restructuring during metamorphosis of holometabolous insects (those that have a pupal stage between the final larval and adult stages). Besides apoptosis, an increasing body of evidence indicates that in several insect species programmed autophagy also plays a key role in these developmental processes. We have recently characterized the midgut replacement process in Heliothis virescens larva, during the prepupal phase, responsible for the formation of a new pupal midgut. We found that the elimination of the old larval midgut epithelium is obtained by a combination of apoptotic and autophagic events. In particular, autophagic PCD completely digests decaying tissues, and provides nutrients that are rapidly absorbed by the newly formed epithelium, which is apparently functional at this early stage. The presence of both apoptosis and autophagy in the replacement of midgut cells in Lepidoptera offers the opportunity to investigate the functional peculiarities of these PCD modalities and if they share any molecular mechanism, which may account for possible cross-talk between them.  相似文献   

14.
In holometabolus insects, morphology of the larval fat body is remodeled during metamorphosis. In higher Diptera, remodeling of the fat body is achieved by cell death of larval fat body cells and differentiation of the adult fat body from primordial cells. However, little is known about remodeling of the fat body at pupal metamorphosis in Lepidoptera. In this study, we found that cell death of the larval fat body in Bombyx mori occurs at shortly after pupation. About 30% of the fat body cells underwent cell death on days 1 and 2 after pupation. The cell death involved genomic DNA fragmentation, a characteristic of apoptosis. Surgical manipulation and in vitro culture of fat body cells revealed that 20-hydroxyecdysone and juvenile hormone had no effect on either initiation or progression of cell death. During cell death, a large increase in activity of caspase-3, a key enzyme of cell death, was observed. Western blot analysis of the active form of caspase-3-like protein revealed that the length of caspase-3 of B. mori was much larger than that of caspase-3 in other species. The results suggest that larval fat body cells of B. mori are removed through cell death, which is mediated by a caspase probably categorized in a novel family.  相似文献   

15.
Programmed cell death is an important process during development that serves to remove superfluous cells and tissues, such as larval organs during metamorphosis, supernumerary cells during nervous system development, muscle patterning and cardiac morphogenesis. Different kinds of cell death have been observed and were originally classified based on distinct morphological features: (1) type I programmed cell death (PCD) or apoptosis is recognized by cell rounding, DNA fragmentation, externalization of phosphatidyl serine, caspase activation and the absence of inflammatory reaction, (2) type II PCD or autophagy is characterized by the presence of large vacuoles and the fact that cells can recover until very late in the process and (3) necrosis is associated with an uncontrolled release of the intracellular content after cell swelling and rupture of the membrane, which commonly induces an inflammatory response. In this review, we will focus exclusively on developmental cell death by apoptosis and its role in tissue remodeling.  相似文献   

16.
Programmed cell death is necessary for the shaping and remodelling of nervous and non-nervous tissues during development. Amphibia, whose body undergoes profound modifications during metamorphosis, are particularly useful models for studying the relationship between cell death in muscles and other non-nervous tissues on the one hand, and in the nervous system connected with these tissues on the other hand. We checked the occurrence of apoptotic cells (identified by TUNEL labelling) in different organs and regions from hatching (stages 35-36) to climax (stages 63-64) in the African Clawed Frog Xenopus laevis. Some organs (e.g., skin and digestive tract) contained apoptotic cells during the entire period studied. In transitory organs (cement gland and gills), a single wave of cell death occurred during the regression of these tissues. In order to compare the timing of cell death in the spinal cord with that of tail regression, we counted the number of TUNEL-positive cells in spinal cord sections taken from animals between stages 54 and 64. Three-dimensional reconstructions using confocal microscopy of vibratome slices immunostained for the detection of c-Jun-like protein accumulated in the cytoplasm of apoptotic cells showed numerous cells at various degrees of degeneration. Many of these cells still presented the morphological characteristics of neurones. The peak of apoptosis was found at stage 58, preceding tail regression. This suggests that neural cell death is not a consequence but rather an element upstream in the chain of events leading to tail degeneration.  相似文献   

17.
The Apaf-1 protein is essential for cytochrome c-mediated caspase-9 activation in the intrinsic mammalian pathway of apoptosis. Although Apaf-1 is the only known mammalian homologue of the Caenorhabditis elegans CED-4 protein, the deficiency of apaf-1 in cells or in mice results in a limited cell survival phenotype, suggesting that alternative mechanisms of caspase activation and apoptosis exist in mammals. In Drosophila melanogaster, the only Apaf-1/CED-4 homologue, ARK, is required for the activation of the caspase-9/CED-3-like caspase DRONC. Using specific mutants that are deficient for ark function, we demonstrate that ARK is essential for most programmed cell death (PCD) during D. melanogaster development, as well as for radiation-induced apoptosis. ark mutant embryos have extra cells, and tissues such as brain lobes and wing discs are enlarged. These tissues from ark mutant larvae lack detectable PCD. During metamorphosis, larval salivary gland removal was severely delayed in ark mutants. However, PCD occurred normally in the larval midgut, suggesting that ARK-independent cell death pathways also exist in D. melanogaster.  相似文献   

18.
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.  相似文献   

19.
Programmed cell death (PCD) is a crucial phenomenon in the life cycle of cereal grains. In germinating grains, the scutellum allows the transport of nutrients from the starchy endosperm to the growing embryo, and therefore it may be the last grain tissue to undergo PCD. Thus, the aim of this work was to analyse whether the scutellum of wheat grains undergoes PCD and to perform a morphological and biochemical analysis of this process. Scutellum cells of grains following germination showed a progressive increase of DNA fragmentation, and the TUNEL assay showed that PCD extended in an apical-to-basal gradient along the scutellum affecting epidermal and parenchymal cells. Electron-transmission microscopy revealed high cytoplasm vacuolation, altered mitochondria, and the presence of double-membrane structures, which might constitute symptoms of vacuolar cell death, whereas the nucleus appeared lobed and had an increased heterochromatin content as the most distinctive features. An acid- and Zn(2+)-dependent nucleolytic activity was identified in nuclear extracts of scutellum cells undergoing PCD. This nuclease was not detected in grains imbibed in the presence of abscisic acid, which inhibited germination. This nucleolytic activity promoted DNA fragmentation in vitro on nuclei isolated from healthy cells, thus suggesting a main role in nucleus dismantling during PCD.  相似文献   

20.
《Autophagy》2013,9(3):359-360
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.

Addendum to: Berry DL, Baehrecke EH. Growth arrest and autophagy are required for programmed salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号