首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anterior cruciate ligament (ACL) volume and T21 relaxation times from magnetic resonance (MR) images have been previously shown to predict the structural properties of healing ligaments. We investigated whether MR imaging scan resolution and condition (in vivo, in situ, or ex vivo) affected ACL volume and T21 relaxation times in intact ligaments. ACLs of 14 pigs were imaged using a 3 T scanner and a six-channel flexcoil using at least two of four possible scan conditions: (1) in vivo moderate resolution (n = 14); (2) in vivo high resolution (n = 7); (3) in situ high resolution acquired within 60 minutes of euthanasia (n = 6); and (4) ex vivo high resolution following hind limb disarticulation and one freeze-thaw cycle (n = 7). T21 relaxation times were mapped to the ACL voxels. The total ACL volume was then divided into four sub-volumes (Vol1–4) based on predetermined increasing ranges of T21 times. ACL T21 statistics (first quartile, median, and standard deviation (SD)) were computed. Scan resolution had no effect on the total ACL volume, but Vol1 and first quartile T21 times decreased with high resolution and in situ/ex vivo scan conditions. The most dramatic differences in T21 summary statistics were between in vivo moderate and ex vivo high resolution scan conditions that included a freeze-thaw cycle: ACL T21 SD increased by over 50% in 9 animals, and more than 90% in 4 animals. Our results indicated that T21-based prediction models to quantify in vivo structural properties of healing ligaments should be based on high resolution in vivo MR scan conditions.  相似文献   

2.
《Cytotherapy》2014,16(4):460-470
Background aimsTraditionally, stem cell therapy for myocardial infarction (MI) has been administered as a single treatment in the acute or subacute period after MI. These time intervals coincide with marked differences in the post-infarct myocardial environment, raising the prospect that repeat cell dosing could provide incremental benefit beyond a solitary intervention. This prospect was evaluated with the use of mesenchymal stromal cells (MSCs).MethodsThree groups of rats were studied. Single-therapy and dual-therapy groups received allogeneic, prospectively isolated MSCs (1 × 106 cells) by trans-epicardial injection immediately after MI, with additional dosing 1 week later in the dual-therapy cohort. Control animals received cryopreservant solution only. Left ventricular (LV) dimensions and ejection fraction (EF) were assessed by cardiac magnetic resonance immediately before MI and at 1, 2 and 4 weeks after MI.ResultsImmediate MSC treatment attenuated early myocardial damage with EF of 35.3 ± 3.1% (dual group, n = 12) and 35.2 ± 2.2% (single group, n = 15) at 1 week after MI compared with 22.1 ± 1.9% in controls (n = 17, P < 0.01). In animals receiving a second dose of MSCs, EF increased to 40.7 ± 3.1% by week 4, which was significantly higher than in the single-therapy group (EF 35.9 ± 1.8%, P < 0.05). Dual MSC treatment was also associated with greater myocardial mass and arteriolar density, with trends toward reduced myocardial fibrosis. These incremental benefits were especially observed in remote (non-infarct) segments of LV myocardium.ConclusionsRepeated stem cell intervention in both the acute and the sub-acute period after MI provides additional improvement in ventricular function beyond solitary cell dosing, largely owing to beneficial changes remote to the area of infarction.  相似文献   

3.
《Cytotherapy》2020,22(1):21-26
Isolation of mesenchymal stromal cells (MSCs) from pretreated, hematologic patients is challenging. Especially after allogeneic hematopoietic cell transplantation (HCT), standard protocols using bone marrow aspirates fail to reliably recover sufficient cell numbers. Because MSCs are considered to contribute to processes that mainly affect the outcome after transplantation, such as an efficient lymphohematopoietic recovery, extent of graft-versus-host disease as well as the occurrence of leukemic relapse, it is of great clinical relevance to investigate MSC function in this context. Previous studies showed that MSCs can be isolated by collagenase digestion of large bone fragments of hematologically healthy patients undergoing hip replacement or knee surgeries. We have now further developed this procedure for the isolation of MSCs from hematologic patients after allogeneic HCT by using trephine biopsy specimens obtained during routine examinations. Comparison of aspirates and trephine biopsy specimens from patients after allogeneic HCT revealed a significantly higher frequency of clonogenic MSCs (colony-forming unit–fibroblast [CFU-F]) in trephine biopsy specimens (mean, 289.8 ± standard deviation 322.5 CFU-F colonies/1 × 106 total nucleated cells versus 4.2 ± 9.9; P < 0.0001). Subsequent expansion of functional MSCs isolated from trephine biopsy specimen was more robust and led to a significantly higher yield compared with control samples expanded from aspirates (median, 1.6 × 106; range, 0–2.3 × 107 P0 MSCs versus 5.4 × 104; range, 0–8.9 × 106; P < 0.0001). Using trephine biopsy specimens as MSC source facilitates the investigation of various clinical questions.  相似文献   

4.
The infrapatellar fat pad (IPFP) is a periarticular adipose knee tissue. This tissue contains a large number of mesenchymal stem cells (MSCs). In the present work, we wanted to study the IPFP MSCs and their relationship and differences in two groups, anterior cruciate ligament (ACL) ruptures knees and ostheoarthrosis (OA). The IPFP of 42 patients with OA or ACL rupture were analyzed. Isolation, primary culture, and a genetic and proteomic study of MSCs from IPFP were performed. Gene expression of IL-6, tumor necrosis factor (TNF), IL-8, HSPA1A (Hsp70), CXCL10, RANTES, MMP1, MMP3, TIMP1, and BMP7 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). We analyzed MSCs from from 12 diferents patients in two cellular pools (6 from AO disease and 6 from ALC rupture to form two cell pool), for the iTRAQ Proteomic Assay. The conditional media were used in quantitative analysis of MSC soluble factors by Luminex and for de migration assay. A higher gene expression of IL-6, TNF, CXCL10, RANTES, and MMP1 and OPG in MSCs from OA versus ACL (p < 0.05) was observed. Conversely HSPA1A, TIMP1, and RANKL showed a significant lower expression in OA-MSCs (p < 0.05). In the secretome analysis, adipsin and visfantin levels in the supernatants from OA-MSCs were lower (p < 0.05) respect to ACL-MSCs. Also, the monocytic cells migrated two-folds in the presence of conditioned media from OA-MSCs patients versus patients with ACL-MSC. The infrapatellar pad should be considered as an adipose tissue capable of producing and excreting inflammatory mediators directly in the knee joint, influencing the development and progression of knee joint pathologies.  相似文献   

5.
Background aimMesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation.MethodsThe authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers.ResultsAs of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32–100%) at 12 weeks and early relief of pain.ConclusionsThe authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.  相似文献   

6.
Background aimsThis study evaluated the feasibility, safety and immunological effects of the intravenous administration of mesenchymal stromal cells (MSCs) from a related donor in patients with refractory aplastic anemia (AA).MethodsA mean of 6 × 105/kg (range, 5.0–7.1 × 105) MSCs were injected intravenously to 18 patients, including 14 patients with nonsevere AA and four patients with severe AA who were refractory to prior immunosuppressive treatment. The outcomes of patients treated with MSCs were evaluated and compared with a historic control cohort, including 18 patients with refractory AA.ResultsTwo patients had injection-related adverse events, including transient fever and headache. No major adverse events were reported during the follow-up period. An immunological analysis revealed an increased proportion of CD4+CD25+ FOXP3+regulatory T cells in peripheral mononuclear cells. Following up for 1 year, six of 18 patients (33.3%) achieved a complete response or a partial response to MSC treatment. In six patients, two achieved a complete response including a recovery of three hematopoietic cell lines after MSCs therapy at days 88 and 92, two patients achieved only a red cell recovery with hemoglobin levels >100 g/L at days 30 and 48 and two patients had only a platelet recovery with a platelet count of >60 × 109/L at days 54 and 81. In the control cohort, only one patient (5.56%) achieved a partial response during the follow-up period.ConclusionsThe data from the present study suggest that treatment with MSCs from a related donor may be a promising therapeutic strategy for patients with refractory AA. The trial has been registered at ClinicalTrials.gov: identifier NCT01305694.  相似文献   

7.
《Phytomedicine》2015,22(5):568-572
BackgroundThe root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine.Hypothesis/purposeWe investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor.Study designConfluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA.Results(1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10−5 M (p < 0.05) and 10−6 M (p < 0.05) or PMA at 10−4 M (p < 0.05), 10−5 M (p < 0.05) and 10−6 M (p < 0.05); (3) methylprotodioscin also suppressed the production of MUC5AC mucin induced by either EGF at 10−4 M (p < 0.05) or PMA at 10−4 M (p < 0.05).ConclusionThese results suggest that dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases.  相似文献   

8.
Background aimsWe evaluated hematopoietic stem cells according to CD34 expression and aldehyde dehydrogenase (ALDH) activity in peripheral blood and apheresis product samples from patients after mobilization with granulocyte–colony-stimulating factor (G-CSF) alone or G-CSF after high-dose cyclophosphamide (4 g/m2 once daily, intravenously on day 1). We also investigated the relationship between the number of SSClo CD45dim CD34hi cells, SSClo ALDHbr cells and engraftment.MethodsThirty patients (20 males and 10 females), who were candidates for autologous peripheral blood stem cell transplantation, were included in the study. Cyclophosphamide + G-CSF was used for 17 and G-CSF alone for 24 mobilizations. Primary diagnoses were multiple myeloma (n% = 14), Hodgkin's lymphoma (n% = 7), non-Hodgkin's lymphoma (n% = 2), acute myloid leukemia (n% = 2), chronic lymphocytic leukemia (n% = 1) and germ cell testis tumor (n% = 1).ResultsNumbers of SSClo CD45dim CD34hi cells and SSClo ALDHbr cells were highly correlated in both peripheral blood and apheresis products (P < 0.001). We could not find a relationship between the transplanted SSClo CD45dim CD34hi cell dose or SSClo ALDHbr cell dose and platelet or neutrophil recovery. The optimal thresholds for SSClo CD45dim CD34hi cells were 5.40 × 106/kg for neutrophil recovery and 7.22 × 106/kg for platelet recovery. The optimal thresholds for SSClo ALDHbr cells were 6.53 × 106/kg for neutrophil recovery and 8.72 × 106/kg platelet recovery.ConclusionsAccording to our data, numbers of SSClo ALDHbr cells are in very good agreement with numbers of SSClo CD45dim CD34hi cells and can be a predictor of stem cell mobilization.  相似文献   

9.
BackgroundKanglaite injection (KLT) is a broad-spectrum anti-tumor drug, which is extracted from the seeds of the Chinese medicinal herb Coix lacryma-jobi, and has been widely used for the treatment of advanced lung cancer.PurposeTo evaluate the combined effects of Kanglaite injection plus platinum-based chemotherapy (PBC) on patients with stage III/IV non-small cell lung cancer (NSCLC).Study designA systematic review and meta-analysis of randomized clinical trials (RCTs).Materials and methodsTwelve databases were searched from their inceptions until July 05, 2019. All the RCTs comparing the efficacy and safety of Kanglaite injection plus PBC versus PBC alone were selected. Analyses were performed using Review Manager 5.3, Comprehensive Meta-Analysis 3.0 and Trial Sequential Analysis (TSA). Disease control rate (DCR) was defined as the primary endpoint, objective response rate (ORR), survival rate, quality of life (QOL), cellular immunity function, and toxicities were defined as the secondary endpoints.ResultsTwenty-seven RCTs recruiting 2,243 patients with stage III/IV NSCLC were included. The results showed that, compared with PBC alone, Kanglaite injection plus PBC improved DCR (RR = 1.20, 95% CI 1.15–1.26, p < 0.00001), ORR (RR = 1.45, 95% CI 1.31–1.60, p < 0.00001), 1-year survival rate (RR = 1.20, 95% CI 1.02–1.43, p = 0.03), QOL (RR = 1.32, 95% CI 1.25–1.40, p < 0.00001), CD4+ T cells (WMD = 4.86, 95% CI 4.00–5.73, p < 0.00001), CD4+/CD8+ ratio (WMD = 0.19, 95% CI 0.07–0.31, p < 0.002), and reduced severe toxicities by 59% (RR = 0.41, 95% CI 0.33–0.51, p < 0.00001). Most results were robust and the quality of evidence was from moderate to low.ConclusionsKanglaite injection in combination with PBC showed significantly higher efficacy than PBC alone in the treatment of stage III/IV NSCLC. Moreover, the combination therapy can improve cellular immunity and attenuate the severe toxicities caused by chemotherapy. However, high-quality RCTs are warranted to further assess the effects of the combined therapy.  相似文献   

10.
《Cytotherapy》2023,25(9):977-985
Background aimsCD4 immune reconstitution (IR) after allogeneic hematopoietic cell transplant (allo-HCT) correlates with lower non-relapse mortality (NRM), but its impact on leukemia relapse remains less clear, especially in children. We studied the correlation between IR of lymphocyte subsets and HCT outcomes in a large cohort of children/young adults with hematological malignancies.MethodsWe retrospectively analyzed CD4, CD8, B-cell and natural killer (NK) cell reconstitution in patients after first allo-HCT for a hematological malignancy at three large academic institutions (n = 503; period 2008–2019). We used Cox proportional hazard and Fine–Gray competing risk models, martingale residual plots and maximally selected log-rank statistics to assess the impact of IR on outcomes.ResultsAchieving CD4 >50 and/or B cells >25 cells/μL before day 100 after allo-HCT was a predictor of lower NRM (CD4 IR: hazard ratio [HR] 0.26, 95% confidence interval [CI] 0.11–0.62, P = 0.002; CD4 and B cell IR: HR 0.06, 95% CI 0.03–0.16, P < 0.001), acute graft-versus-host disease (GVHD) (CD4 and B cell IR: HR 0.02, 95% CI 0.01–0.04, P < 0.001) and chronic GVHD (CD4 and B cell IR: HR 0.16, 95% CI 0.05–0.49, P = 0.001) in the full cohort, and of lower risk of relapse (CD4 and B cell IR: HR 0.24, 95% CI 0.06–0.92, P = 0.038) in the acute myeloid leukemia subgroup. No correlation between CD8 and NK-cell IR and relapse or NRM was found.ConclusionsCD4 and B-cell IR was associated with clinically significant lower NRM, GVHD and, in patients with acute myeloid leukemia, disease relapse. CD8 and NK-cell IR was neither associated with relapse nor NRM. If confirmed in other cohorts, these results can be easily implemented for risk stratification and clinical decision making.  相似文献   

11.
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1–3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.  相似文献   

12.
《Cytotherapy》2014,16(7):934-945
BackgroundTo evaluate the therapeutic efficacy of dendritic cells (DC) alone, cytokine-induced killer (CIK) cells alone and the combination of DC and CIK cells in the treatment of breast cancer, we performed a systemic review of the relevant published clinical studies, collectively referred to as DC-CIK cell therapy.MethodsSix hundred thirty-three patients with breast cancer were assigned to cohorts, and a meta-analysis was conducted.ResultsThe treatment of breast cancer with DC-CIK cells was associated with a significantly improved 1-year survival (P = 0.0001). The Karnofsky performance status scale of the patients treated with DC-CIK cells was significantly improved compared with that of the non-DC-CIK group (P < 0.0001). The percentage of T cells (CD3+, CD4+ and CD4+CD8+), CD16+ monocytes, and CD3+CD56+ natural killer T cells in the peripheral blood of cancer patients was significantly increased (P ≤ 0.05), whereas the percentage of CD4+CD25+ regulatory T cells was not significantly decreased (P = 0.32) in the DC-CIK treatment group compared with the non-DC-CIK group. The levels of interleukin-2, interleukin-12, tumor necrosis factor-α, interferon-γ, and nucleolar organizer region protein in the peripheral blood of cancer patients, which reflect immune function, were significantly increased (P < 0.001) after DC-CIK cell treatment. Furthermore, after DC-CIK treatment, the average levels of the alpha-fetoprotein, cancer antigen embryonic antigen and carbohydrate antigen tumor markers were decreased (P < 0.00001).ConclusionsDC-CIK cell therapy markedly prolongs survival time, enhances immune function, and improves the efficacy of the treatment of breast cancer patients.  相似文献   

13.
《Cytotherapy》2014,16(3):406-411
Background aimsThe increasing scarcity of young related donors has led to the use of older donors for related allogeneic hematopoietic stem cell transplantation (HSCT). This study analyzed the influence of age on the results of mobilization of peripheral blood stem cells (PBSCs) in healthy donors as well as on the engraftment and outcome of HSCT.MethodsA retrospective analysis from a single center was performed comparing the results of PBSC mobilization from related healthy donors according to their age.ResultsThe study included 133 consecutive related donors. The median age was 50 years (range, 4–77 years); 70 (53%) donors were males, and 44 (33%) were >55 years old. All donors were mobilized with granulocyte colony-stimulating factor for 5 days. The peak CD34+ cell count in peripheral blood was higher in younger than in older donors (median, 90.5 CD34+ cells/μL [range, 18–240 CD34+ cells/μL] versus 72 CD34+ cells/μL [range, 20–172.5 CD34+ cells/μL], P = 0.008). The volume processed was lower in younger than in older donors (16,131 mL [range, 4424–36,906 mL] versus 18,653 mL [range, 10,003–26,261 mL], P = 0.002) with similar CD34+ cells collected (579.3 × 106 cells [range, 135.14 × 106–1557.24 × 106 cells] versus 513.69 × 106 cells [range, 149.81 × 106–1290 × 106 cells], P = 0.844). There were no differences in time to recovery of neutrophils and platelets or in the incidences of acute and chronic graft-versus-host disease, overall survival, non-relapse mortality and relapse incidence.ConclusionsDonors >55 years old mobilized fewer CD34+ cells and required a greater volume to collect a similar number of CD34+ cells. The outcome of HSCT was not influenced by donor age. Donor age should not be a limitation for related allogeneic HSCT.  相似文献   

14.
Background aimsThe authors aim to analyze the evidence in the literature regarding the efficacy and safety of mesenchymal stem cell (MSC) therapy in human subjects with traumatic spinal cord injury (SCI) and identify its potential role in the management of SCI.MethodsThe authors conducted independent and duplicate searches of electronic databases, including PubMed, Embase and the Cochrane Library, until May 2020 for studies analyzing the efficacy and safety of stem cell therapy for SCI. American Spine Injury Association (ASIA) impairment scale (AIS) grade improvement, ASIA sensorimotor score, activities of daily living score, residual urine volume, bladder function improvement, somatosensory evoked potential (SSEP) improvement and adverse reactions were the outcomes analyzed. Analysis was performed in R platform using OpenMeta[Analyst] software.ResultsNineteen studies involving 670 patients were included for analysis. On analysis, the intervention group showed statistically significant improvement in AIS grade (P < 0.001), ASIA sensory score (P < 0.017), light touch (P < 0.001), pinprick (P = 0.046), bladder function (P = 0.012), residual urine volume (P = 0.023) and SSEP (P = 0.002). However, no significant difference was noted in motor score (P = 0.193) or activities of daily living score (P = 0.161). Although the intervention group had a significant increase in complications (P < 0.001), no serious or permanent adverse events were reported. On subgroup analysis, low concentration of MSCs (<5 × 107 cells) and initial AIS grade A presentation showed significantly better outcomes than their counterparts.ConclusionsThe authors’ analysis establishes the efficacy and safety of MSC transplantation in terms of improvement in AIS grade, ASIA sensory score, bladder function and electrophysiological parameters like SSEP compared with controls, without major adverse events. However, further research is needed to standardize dose, timing, route and source of MSCs used for transplantation.  相似文献   

15.
Background aimsMesenchymal stromal cells (MSCs) are pluripotent cells that have immunosuppressive and reparative properties in vitro and in vivo. Although autologous bone marrow (BM)-derived MSCs are already clinically tested in transplant recipients, it is unclear whether these BM cells are affected by renal disease. We assessed whether renal failure affected the function and therapeutic potential of BM-MSCs.MethodsMSCs from 10 adults with end-stage renal disease (ESRD) and 10 age-matched healthy controls were expanded from BM aspirates and tested for phenotype and functionality in vitro.ResultsMSCs from ESRD patients were >90% positive for CD73, CD90 and CD105 and negative for CD34 and CD45 and showed a similar morphology and differentiation capacity as MSCs from healthy controls. Of importance for their clinical utility, growth characteristics were similar in both groups, and sufficient numbers of MSCs were obtained within 4 weeks. Messenger RNA expression levels of self-renewal genes and factors involved in repair and inflammation were also comparable between both groups. Likewise, microRNA expression profiling showed a broad overlap between ESRD and healthy donor MSCs. ESRD MSCs displayed the same immunosuppressive capacities as healthy control MSCs, demonstrated by a similar dose-dependent inhibition of peripheral blood mononuclear cell proliferation, similar inhibition of proinflammatory cytokines tumor necrosis factor-α and interferon-γ production and a concomitant increase in the production of interleukin-10.ConclusionsExpanded BM-MSCs procured from ESRD patients and healthy controls are both phenotypically and functionally similar. These findings are important for the potential autologous clinical application of BM-MSCs in transplant recipients.  相似文献   

16.
《Cytotherapy》2014,16(1):111-121
Background aimsMesenchymal stromal cells (MSCs) resemble an essential component of the bone marrow niche for maintenance of stemness of hematopoietic progenitor cells (HPCs). Perturbation of the C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor-1α (SDF-1α) axis by plerixafor (AMD3100) mobilizes HPCs from their niche; however, little is known about how plerixafor affects interaction of HPCs and MSCs in vitro.MethodsWe monitored cell division kinetics, surface expression of CD34 and CXCR4, migration behavior and colony-forming frequency of HPCs on co-culture with MSCs either with or without exposure to plerixafor.ResultsCo-culture with MSCs significantly accelerated cell division kinetics of HPCs. Despite this, the proportion of CD34+ cells was significantly increased on co-culture, whereas the expression of CXCR4 was reduced. In addition, co-culture with MSCs led to significantly higher colony-forming capacity and enhanced migration rate of HPCs compared with mono-culture conditions. The composition of MSC sub-populations—and conversely their hematopoiesis supportive functions—may be influenced by culture conditions. We compared the stromal function of MSCs isolated with three different culture media. Overall, the supporting potentials of these MSC preparations were quite similar. Perturbation by the CXCR4-antagonist plerixafor reduced the cell division kinetics of HPCs on co-culture with MSCs. However, the progenitor cell potential of the HPCs as reflected by colony-forming capacity was not affected by plerixafor.ConclusionsThese results support the notion that the CXCR4/SDF-1α axis is critical for HPC-MSC interaction with regard to migration, adhesion and regulation of proliferation but not for maintenance of primitive progenitor cells.  相似文献   

17.
The characteristics of anterior cruciate ligament (ACL)-derived mesenchymal stem cells (MSCs), such as proportion and multilineage potential, can be affected by donor age. However, the qualitative and quantitative features of ACL MSCs isolated from younger and older individuals have not yet been compared directly. This study assessed the phenotypic and functional differences in ACL-MSCs isolated from younger and older donors and evaluated the correlation between ACL-MSC proportion and donor age. Torn ACL remnants were harvested from 36 patients undergoing ACL reconstruction (young: 29.67 ± 10.92 years) and 33 undergoing TKA (old: 67.96 ± 5.22 years) and the proportion of their MSCs were measured. The mean proportion of MSCs was slightly higher in older ACL samples of the TKA group than of the younger ACL reconstruction group (19.69 ± 8.57% vs. 15.33 ± 7.49%, p = 0.024), but the proportions of MSCs at passages 1 and 2 were similar. MSCs from both groups possessed comparable multilineage potentiality, as they could be differentiated into adipocytes, osteocytes, and chondrocytes at similar level. No significant correlations were observed between patient age and MSC proportions at passages 0–2 or between age and MSC proportion in both the ACL reconstruction and TKA groups. Multiple linear regression analysis found no significant predictor of MSC proportion including donor age for each passage. Microarray analysis identified several genes that were differentially regulated in ACL-MSCs from old TKA patients compared to young ACL reconstruction patients. Genes of interest encode components of the extracellular matrix (ECM) and may thus play a crucial role in modulating tissue homeostasis, remodeling, and repair in response to damage or disease. In conclusion, the proportion of freshly isolated ACL-MSC was higher in elderly TKA patients than in younger patients with ACL tears, but their phenotypic and multilineage potential were comparable.  相似文献   

18.
BACKGROUNDMultipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft vs host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective. The MSCs obtained from different donors have individual characteristics. The differences between MSC samples may affect their clinical efficacy.AIMTo study the differences between effective and ineffective MSCs.METHODSMSCs derived from the bone marrow of a hematopoietic stem cells donor were injected intravenously into allo-BMT recipients for GVHD prophylaxis at the moment of blood cell reconstitution. Aliquots of 52 MSC samples that were administered to patients were examined, and the same cells were cultured in the presence of peripheral blood mononuclear cells (PBMCs) from a third-party donor or treated with the pro-inflammatory cytokines IL-1β, IFN and TNF. Flow cytometry revealed the immunophenotype of the nontreated MSCs, the MSCs cocultured with PBMCs for 4 d and the MSCs exposed to cytokines. The proportions of CD25-, CD146-, CD69-, HLA-DR- and PD-1-positive CD4+ and CD8+ cells and the distribution of various effector and memory cell subpopulations in the PBMCs cocultured with the MSCs were also determined.RESULTSDifferences in the immunophenotypes of effective and ineffective MSCs were observed. In the effective samples, the mean fluorescence intensity (MFI) of HLA-ABC, HLA-DR, CD105, and CD146 was significantly higher. After MSCs were treated with IFN or cocultured with PBMCs, the HLA-ABC, HLA-DR, CD90 and CD54 MFI showed a stronger increase in the effective MSCs, which indicated an increase in the immunomodulatory activity of these cells. When PBMCs were cocultured with effective MSCs, the proportions of CD4+ and CD8+central memory cells significantly decreased, and the proportion of CD8+CD146+ lymphocytes increased more than in the subpopulations of lymphocytes cocultured with MSC samples that were ineffective in the prevention of GVHD; in addition, the proportion of CD8+effector memory lymphocytes decreased in the PBMCs cocultured with the effective MSC samples but increased in the PBMCs cocultured with the ineffective MSC samples. The proportion of CD4+CD146+ lymphocytes increased only when cocultured with the inefficient samples.CONCLUSIONFor the first time, differences were observed between MSC samples that were effective for GVHD prophylaxis and those that were ineffective. Thus, it was shown that the immunomodulatory activity of MSCs depends on the individual characteristics of the MSC population.  相似文献   

19.
《Cytotherapy》2023,25(7):782-788
Background and aimsRecessive dystrophic epidermolysis bullosa (RDEB) is a hereditary, rare, devastating and life-threatening skin fragility disorder with a high unmet medical need. In a recent international, single-arm clinical trial, treatment of 16 patients (aged 6–36 years) with three intravenous infusions of 2 × 106 immunomodulatory ABCB5+ dermal mesenchymal stromal cells (MSCs)/kg on days 0, 17 and 35 reduced disease activity, itch and pain. A post-hoc analysis was undertaken to assess the potential effects of treatment with ABCB5+ MSCs on the overall skin wound healing in patients suffering from RDEB.MethodsDocumentary photographs of the affected body regions taken on days 0, 17, 35 and at 12 weeks were evaluated regarding proportion, temporal course and durability of wound closure as well as development of new wounds.ResultsOf 168 baseline wounds in 14 patients, 109 (64.9%) wounds had closed at week 12, of which 63.3% (69 wounds) had closed already by day 35 or day 17. Conversely, 74.2% of the baseline wounds that had closed by day 17 or day 35 remained closed until week 12. First-closure ratio within 12 weeks was 75.6%. The median rate of newly developing wounds decreased significantly (P = 0.001) by 79.3%.ConclusionsComparison of the findings with published data from placebo arms and vehicle-treated wounds in controlled clinical trials suggests potential capability of ABCB5+ MSCs to facilitate wound closure, prolongate wound recurrence and decelerate formation of new wounds in RDEB. Beyond suggesting therapeutic efficacy for ABCB5+ MSCs, the analysis might stimulate researchers who develop therapies for RDEB and other skin fragility disorders to not only assess closure of preselected target wounds but pay attention to the patients’ dynamic and diverse overall wound presentation as well as to the durability of achieved wound closure and the development of new wounds.Trial registrationClinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.  相似文献   

20.
Greater hamstring musculotendinous stiffness is associated with lesser ACL loading mechanisms. Stiffness is enhanced via training, but previous investigations evaluated tendon rather than musculotendinous stiffness, and none involved the hamstrings. We evaluated the effects of isometric and isotonic training on hamstring stiffness and ACL loading mechanisms. Thirty-six healthy volunteers were randomly assigned to isometric, isotonic, and control groups. Isometric and isotonic groups completed 6 weeks of training designed to enhance hamstring stiffness. Stiffness, anterior tibial translation, and landing biomechanics were measured prior to and following the interventions. Hamstring stiffness increased significantly with isometric training (15.7%; p = 0.006), but not in the isotonic (13.5%; p = 0.089) or control (0.4%; p = 0.942) groups. ACL loading mechanisms changed in manners consistent with lesser loading, but these changes were not statistically significant. These findings suggest that isometric training may be an important addition to ACL injury prevention programs. The lack of significant changes in ACL loading mechanisms and effects of isotonic training were likely due to the small sample sizes per group and limited intervention duration. Future research using larger sample sizes and longer interventions is necessary to determine the effects of enhancing hamstring stiffness on ACL loading and injury risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号