首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of increasing protein load on subsequent receptor-mediated protein uptake was studied in the kidney of the common frog Rana temporaria L. Results of in vivo experiments were analyzed in fixed kidney sections using fluorescent or confocal microscopy and immunohistochemistry. Lysozyme was used for daily tubular loading in short-term experiments. Reabsorption of yellow fluorescent protein (YFP) in the proximal tubule (PT) was tested 60 min after introduction into the dorsal lymphatic sac. YFP uptake decreased progressively with increasing duration of lysozyme preload from 2 to 4 days. Lysozyme loading and single protein injections did not change the morphological characteristics of frog glomeruli and PTs, as shown by light and electron microscopy and morphometric analysis. Cessation of loading led to a decrease in the amount of lysozyme accumulated in PT cells. Reduced YFP uptake gradually recovered after cessation of the 4-day load. Restoration of YFP reabsorption was accompanied by increasing expression of endocytic receptors, megalin and cubilin. Based on the data obtained, the frog model can be successfully used for studying both morphological and functional changes in the nephron caused by tubular or glomerular proteinuria and molecular mechanisms involved in the process of renal protein reabsorption.  相似文献   

2.
Clara cell secretory protein (CCSP) is a transport protein for lipophilic substances in bronchio-alveolar fluid, plasma, and uterine secretion. It acts as a carrier for steroid hormones and polychlorinated biphenyl metabolites. Previously, the existence of receptors for uptake of CCSP.ligand complexes into the renal proximal tubules had been suggested. Using surface plasmon resonance analysis, we demonstrate that CCSP binds to cubilin, a peripheral membrane protein on the surface of proximal tubular cells. Binding to cubilin results in uptake and lysosomal degradation of CCSP in cultured cells. Surprisingly, internalization of CCSP is blocked not only by cubilin antagonists but also by antibodies directed against megalin, an endocytic receptor that does not bind CCSP but associates with cubilin. Consistent with a role of both receptors in renal uptake of CCSP in vivo, patients deficient for cubilin or mice lacking megalin exhibit a defect in tubular uptake of the protein and excrete CCSP into the urine. These findings identify a cellular pathway consisting of a CCSP-binding protein (cubilin) and an endocytic coreceptor (megalin) responsible for tissue-specific uptake of CCSP and associated ligands.  相似文献   

3.
The adaptor protein ARH escorts megalin to and through endosomes   总被引:4,自引:0,他引:4       下载免费PDF全文
Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.  相似文献   

4.
Evidence for the role of megalin in renal uptake of transthyretin   总被引:4,自引:0,他引:4  
The kidney is a major organ for uptake of the thyroid hormone thyroxine (T(4)) and its conversion to the active form, triiodothyronine. In the plasma, one of the T(4) carriers is transthyretin (TTR). In the present study we observed that TTR, the transporter of both T(4) and retinol-binding protein, binds to megalin, the multiligand receptor expressed on the luminal surface of various epithelia including the renal proximal tubules. In the kidney, megalin plays an important role in tubular uptake of macromolecules filtered through the glomerulus. To evaluate the importance of megalin for renal uptake of TTR, we performed binding/uptake assays using immortalized rat yolk sac cells with high expression levels of megalin. Radiolabeled TTR, free as well as in complex with thyroxine or retinol-binding protein, was rapidly taken up by the cells, and the uptake was strongly inhibited by a polyclonal megalin antibody and by the receptor-associated protein, a chaperone-like protein inhibiting ligand binding to megalin. In cell culture, different TTR mutations presented different levels of cell association and degradation, suggesting that the structure of TTR is important for megalin recognition. Both the apo form and the T(4)-bound form were taken up by the cells. Analysis of urine from patients with Dent's disease, a renal tubular disorder that alters receptor-mediated endocytic reabsorption of proteins, identified TTR as an abundant excreted protein. Furthermore, analysis of kidney sections of megalin-deficient mice revealed no immunohistochemical TTR labeling in intracellular vesicles in the proximal tubule cells when compared with wild type control littermates. Taken together, the present data indicate that TTR represents a novel megalin ligand of importance in the thyroid hormone homeostasis.  相似文献   

5.
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5 min exposure, however there was no co-localisation at 10, 20 and 30 min exposure. In OK cells, acute exposure to leptin for 2 h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis.  相似文献   

6.
Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva and semen. The function and significance of FBPs are unresolved, however, it has been suggested that they may facilitate folate uptake, e.g. during suckling. The present study shows that megalin, a large, multiligand endocytic receptor and member of the low-density lipoprotein-receptor family, is able to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited by receptor associated protein and by antimegalin antibodies. Microinjection of (125)I-labeled FBP into renal tubules in vivo shows proximal tubular uptake by endocytosis. Megalin is expressed in several absorptive epithelia, including intestine and kidney proximal tubule, and thus the present findings provide a mechanism for intestinal and renal endocytic uptake of soluble FBP.  相似文献   

7.
Deficiency of the intrinsic lysosomal protein human scavenger receptor class B, member 2 (SCARB2; Limp-2 in mice) causes collapsing focal and segmental glomerular sclerosis (FSGS) and myoclonic epilepsy in humans, but patients with no apparent kidney damage have recently been described. We now demonstrate that these patients can develop tubular proteinuria. To determine the mechanism, mice deficient in Limp-2, the murine homolog of SCARB2, were studied. Most low-molecular-weight proteins filtered by the glomerulus are removed in the proximal convoluted tubule (PCT) by megalin/cubilin-dependent receptor-mediated endocytosis. Expression of megalin and cubilin was unchanged in Limp-2(-/-) mice, however, and the initial uptake of injected Alexa Fluor 555-conjugated bovine serum albumin (Alexa-BSA) was similar to wild-type mice, indicating that megalin/cubilin-dependent, receptor-mediated endocytosis was unaffected. There was a defect in proteolysis of reabsorbed proteins in the Limp-2(-/-) mice, demonstrated by the persistence of Alexa-BSA in the PCT compared with controls. This was associated with the failure of the lysosomal protease cathepsin B to colocalize with Alexa-BSA and endogenous retinol-binding protein in kidneys from Limp-2(-/-) mice. The data suggest that tubular proteinuria in Limp-2(-/-) mice is due to failure of endosomes containing reabsorbed proteins to fuse with lysosomes in the proximal tubule of the kidney. Failure of proteolysis is a novel mechanism for tubular proteinuria.  相似文献   

8.
Cubilin is a peripheral membrane protein that cooperates with the endocytic receptor megalin to mediate endocytosis of ligands in various polarized epithelia. Megalin is expressed in the male reproductive tract where it has been implicated in the process of sperm membrane remodeling. A potential role for cubilin in the male reproductive tract has not been explored. Using RT-PCR, we found that cubilin and megalin mRNAs are expressed in the efferent ducts, corpus and cauda epididymis, and proximal and distal vas deferens. Immunohistological analysis revealed that cubilin was expressed in nonciliated cells of the efferent ducts, principal cells of the corpus and cauda epididymis and vas deferens. Immunogold EM showed cubilin in endocytic pits, endocytic vesicles, and endosomes of these cells. The expression profile of cubilin in the male reproductive tract was coincident with that of megalin except in principal cells of the caput epididymis. Double immunogold labeling showed that cubilin and megalin co-localized within the endocytic apparatus and recycling vesicles of efferent duct cells. Neither protein was found in lysosomes. Injection of RAP, an antagonist of megalin interaction with cubilin, reduced the level of intracellular cubilin in cells of the efferent ducts and vas deferens. In conclusion, cubilin and megalin are co-expressed in cells of the epididymis and vas deferens and the endocytosis of cubilin in these tissues is dependent on megalin. Together, these findings highlight the potential for a joint endocytic role for cubilin and megalin in the male reproductive tract.  相似文献   

9.
Cubilin has recently been shown to function as an endocytic receptor for high density lipoproteins (HDL). The lack of apparent transmembrane and cytoplasmic domains in cubilin raises questions as to the means by which it can mediate endocytosis. Since cubilin has been reported to bind the endocytic receptor megalin, we explored the possibility that megalin acts in conjunction with cubilin to mediate HDL endocytosis. While megalin did not bind to HDL, delipidated HDL, or apoA-I, it was found to copurify with cubilin isolated by HDL-Sepharose affinity chromatography. Cubilin and megalin exhibited coincident patterns of mRNA expression in mouse tissues including the kidney, ileum, thymus, placenta, and yolk sac endoderm. The expression of both receptors in yolk sac endoderm-like cells was inducible by retinoic acid treatment but not by conditions of sterol depletion. Suppression of megalin activity or expression by treatment with either megalin antibodies or megalin antisense oligodeoxynucleotides resulted in inhibition of cubilin-mediated endocytosis of HDL. Furthermore, megalin antisense oligodeoxynucleotide treatment resulted in reduced cell surface expression of cubilin. These data demonstrate that megalin acts together with cubilin to mediate HDL endocytosis and further suggest that megalin may play a role in the intracellular trafficking of cubilin.  相似文献   

10.
Albuminuria contributes to the development and progression of chronic kidney disease by inducing tubulointerstitial inflammation (TI) and fibrosis. However, the exact mechanisms of TI in response to albuminuria are unresolved. We previously demonstrated that NLRP3 and inflammasomes mediate albumin-induced lesions in tubular cells. Here, we further investigated the role of endocytic receptors and lysosome rupture in NLRP3 inflammasome activation. A murine proteinuric nephropathy model was induced by albumin overload as described previously. The priming and activation signals for inflammasome complex formation were evoked simultaneously by albumin excess in tubular epithelial cells. The former signal was dependent on a albumin-triggered NF-κB pathway activation. This process is mediated by the endocytic receptor, megalin and cubilin. However, the silencing of megalin or cubilin inhibited the albumin-induced NLRP3 signal. Notably, subsequent lysosome rupture and the corresponding release of lysosomal hydrolases, especially cathepsin B, were observed in tubular epithelial cells exposed to albumin. Cathepsin B release and distribution are essential for NLRP3 signal activation, and inhibitors of cathepsin B suppressed the NLRP3 signal in tubular epithelial cells. Taken together, our findings suggest that megalin/cubilin and lysosome rupture are involved in albumin-triggered tubular injury and TI. This study provides novel insights into albuminuria-induced TI and implicates the active control of albuminuria as a critical strategy to halt the progression of chronic kidney disease.  相似文献   

11.
Cubilin and megalin are giant glycoprotein receptors abundant on the luminal surface of proximal tubular cells of the kidney. We showed previously that light chains are a ligand for cubilin. As cubilin and megalin share a number of common ligands, we further investigated the ligand specificity of these receptors. Three lines of evidence suggest that light chains can also bind megalin: 1) anti-megalin antiserum largely displaces brush-border light chain binding and megalin-expressing BN-16 cell uptake more than anti-cubilin antiserum, 2) direct binding studies on isolated proteins using surface plasmon resonance techniques confirm that megalin binds light chains, and 3) light chains compete with known megalin ligands for brush-border membrane binding and BN-16 cell uptake. The megalin-light chain interaction is divalent ion dependent and similar for both kappa- and lambda-light chains. A fit of the data on light chain binding to megalin over a concentration range 0.078-2.5 mg/ml leads to an estimated dissociation constant of 6 x 10(-5) M, corresponding approximately to one light chain-binding site per megalin and in the same range for dissociation constants for cubilin binding. These data suggest that light chains bind the tandem megalin-cubilin complex. Megalin is the major mediator of light chain entry into megalin-expressing membrane such as the apical surface of proximal tubular epithelial cells.  相似文献   

12.
We investigated in vivo catabolism of apolipoprotein A-II (apo A-II), a major determinant of plasma HDL levels. Like apoA-I, murine apoA-II (mapoA-II) and human apoA-II (hapoA-II) were reabsorbed in the first segment of kidney proximal tubules of control and hapoA-II-transgenic mice, respectively. ApoA-II colocalized in brush border membranes with cubilin and megalin (the apoA-I receptor and coreceptor, respectively), with mapoA-I in intracellular vesicles of tubular epithelial cells, and was targeted to lysosomes, suggestive of degradation. By use of three transgenic lines with plasma hapoA-II concentrations ranging from normal to three times higher, we established an association between plasma concentration and renal catabolism of hapoA-II. HapoA-II was rapidly internalized in yolk sac epithelial cells expressing high levels of cubilin and megalin, colocalized with cubilin and megalin on the cell surface, and effectively competed with apoA-I for uptake, which was inhibitable by anti-cubilin antibodies. Kidney cortical cells that only express megalin internalized LDL but not apoA-II, apoA-I, or HDL, suggesting that megalin is not an apoA-II receptor. We show that apoA-II is efficiently reabsorbed in kidney proximal tubules in relation to its plasma concentration.  相似文献   

13.
The renal tubular uptake of green fluorescent protein (GFP) after its bolus intravenous injection was studied in both frogs and rats. GFP fluorescence in the proximal tubule (PT) was revealed by fluorescent and confocal microscopy. Granular GFP fluorescence was observed nearby in the apical membrane of PT cells featuring distribution over the cytoplasm. GFP was internalized into endosomes and lysosomes as determined by immunocytochemistry in frogs. The tubular uptake and accumulation of GFP were dose- and time-dependent in both rats and frogs. Intralymphatic sac injection of arginine vasotocin (AVT) decreased the uptake of GFP in hydrated frogs. A high negative correlation between the AVT dose and the uptake of GFP was revealed. The effect of AVT was inhibited by a V(1)-receptor antagonist. A noted decrease in the average number of fluorescent PT profiles per kidney section and their irregular distribution after AVT injections suggest that not all of the glomeruli or preglomerular vessels are equally responsive to AVT. GFP may serve as a good marker for tubular uptake and intracellular traffic in the amphibian kidney for use in in vivo studies.  相似文献   

14.
Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.  相似文献   

15.
Megalin antagonizes activation of the parathyroid hormone receptor   总被引:4,自引:0,他引:4  
Parathyroid hormone (PTH) is predominantly cleared from the circulation by glomerular filtration and degradation in the renal proximal tubules. Here, we demonstrate that megalin, a multifunctional endocytic receptor in the proximal tubular epithelium, mediates the uptake and degradation of PTH. Megalin was purified from kidney membranes as the major PTH-binding protein and shown in BIAcore analysis to specifically bind full-length PTH and amino-terminal PTH fragments (Kd 0.5 microM). Absence of the receptor in megalin knockout mice resulted in 4-fold increased levels of amino-terminal PTH fragments in the urine. In F9 cells expressing both megalin and the PTH/PTH-related peptide receptor (PTH/PTHrP receptor), uptake and lysosomal degradation of the hormone was mediated through megalin. Blocking megalin-mediated clearance of PTH resulted in 3-fold increased stimulation of the PTH/PTHrP receptor. These data provide evidence that megalin is involved in the renal catabolism of PTH and potentially antagonizes PTH/PTHrP receptor activity in the proximal tubular epithelium.  相似文献   

16.
Megalin-mediated endocytosis of cystatin C in proximal tubule cells   总被引:1,自引:0,他引:1  
Serum levels of cystatin C, an endogenous cysteine proteinase inhibitor, are often used as an indicator of glomerular filtration rate. Although it is known that cystatin C is filtered by glomeruli and metabolized in proximal tubule cells (PTC), the precise molecular mechanism underlying this process is undetermined. Using quartz-crystal microbalance analyses, we demonstrate that cystatin C binds directly to megalin, an endocytic receptor in PTC, in a Ca(+)-dependent manner. We also find that cystatin C is endocytosed specifically via megalin in rat yolk sac epithelium-derived L2 cells which share a variety of characteristics with PTC. Finally, in vivo studies using kidney-specific megalin knockout mice provide evidence that megalin mediates proximal tubular uptake of cystatin C. We conclude that megalin is an endocytic receptor of cystatin C in PTC.  相似文献   

17.

Background

Free light chains (LCs) are among the many ligands that bind to cubilin/megalin for endocytosis via the clathrin-dependent endosomal/lysosomal pathway. Receptor associated protein (RAP), is a 39 kDA high-affinity, chaperone-like ligand for megalin that assists in the proper folding and functioning of megalin/cubilin. Although RAP is known to inhibit ligand binding to megalin/cubilin, its effect on LC endocytosis has not been shown directly.

Methods and Principal Findings

We investigated whether RAP can block the endocytosis of LC in cultured human proximal tubule cells and whether this can prevent LC cytotoxicity. Immunofluorescence microscopy and flow cytometry showed that fluorescently labeled LC endocytosis was markedly inhibited in HK-2 cells pretreated with human RAP. The effect of RAP was dose-dependent, and was predominantly on endocytosis as it had no effect on the small acid-washable fraction of LC bound to cell membrane. RAP significantly inhibited LC induced cytokine production and phosphorylation of ERK1/2 and p38 MAPK. Prolonged exposure to LC for 48 h resulted in epithelial-to-mesenchymal transformation in HK-2 cells as evidenced by marked reduction in the expression of the epithelial cell marker E-cadherin, and increased the expression of the mesenchymal marker α-SMA, which was also prevented by RAP in the endocytosis medium.

Conclusions

RAP inhibited LC endocytosis by ∼88% and ameliorated LC-induced cytokine responses and EMT in human PTCs. The results not only provide additional evidence that LCs endocytosis occurs via the megalin/cubilin endocytic receptor system, but also show that blocking LC endocytosis by RAP can protect proximal tubule cells from LC cytotoxicity.  相似文献   

18.
The role of the kidney in lipid metabolism   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential for the membrane association and trafficking of cubilin. SUMMARY: The kidney has a high capacity for uptake of lipid-binding proteins and lipid-regulating hormones via the megalin and cubilin/amnionless protein receptors. Although the glomerular filtration barrier prevents access of the large lipoprotein particles to the proximal tubules, the receptors may be exposed to lipids bound to filtered lipid-binding proteins not associated to lipoprotein particles. Renal filtration and receptor-mediated uptake of lipid-binding and lipid-regulating proteins may therefore influence overall lipid metabolism. The pathological mechanisms causing the pronounced atherosclerosis-promoting effect of uremia may involve impairment of this clearance pathway.  相似文献   

19.
Cubilin, a 456 kDa multipurpose receptor lacking in both transmembrane and cytoplasmic domains is expressed in the apical BBMs (brush border membranes) of polarized epithelia. Cubilin interacts with two transmembrane proteins, AMN, a 45-50 kDa protein product of the amnionless gene, and megalin, a 600 kDa giant endocytic receptor. In vitro, three fragments of cubilin, the 113-residue N-terminus and CUB domains 12-17 and 22-27, demonstrated Ca2+-dependent binding to megalin. Immunoprecipitation and immunoblotting studies using detergent extracts of rat kidney BBMs revealed that cubilin interacts with both megalin and AMN. Ligand (intrinsic factor-cobalamin)-affinity chromatography showed that in renal BBMs, functional cubilin exists as a complex with both AMN and megalin. Cubilin and AMN levels were reduced by 80% and 55-60% respectively in total membranes and BBMs obtained from kidney of megalin antibody-producing rabbits. Immunohistochemical analysis and turnover studies for cubilin in megalin or AMN gene-silenced opossum kidney cells showed a significant reduction (85-90%) in cubilin staining and a 2-fold decrease in its half-life. Taken together, these results indicate that three distinct regions of cubilin bind to megalin and its interactions with both megalin and AMN are essential for its intracellular stability.  相似文献   

20.
Aminoglycosides are antibiotics commonly used to treat life-threatening Gram-negative bacterial infections. However, their use is hampered by their severe nephrotoxicity due to accumulation in renal proximal tubules. Several pathways have been implicated in the renal uptake of aminoglycosides including megalin, an endocytic receptor in proximal tubular cells. Here, we have used mouse models with genetic or functional megalin deficiency to explore the contribution of megalin and other pathways to renal aminoglycoside uptake in vivo. We demonstrate that the uptake of aminoglycosides into the kidney directly correlates with renal megalin activity and is completely eliminated in mice lacking the receptor. Thus, our studies provide unequivocal evidence that megalin is the only major pathway responsible for renal aminoglycoside accumulation and that the receptor represents a unique drug target to prevent aminoglycoside-induced nephrotoxicity in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号