首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.  相似文献   

3.
We have found that the large intracellular loop of the γ2 GABAA receptor (R) subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast two-hybrid and in vitro pulldown assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/nonubiquitinated γ2. Mutating several lysines of the γ2IL into arginines makes the γ2 subunit resistant to RNF34-induced degradation. RNF34 also reduces the expression of the γ2 subunit when α1 and β3 subunits are co-assembled with γ2. This effect is partially reversed by leupeptin or MG132, indicating that both the lysosomal and proteasomal degradation pathways are involved. Immunofluorescence of cultured hippocampal neurons shows that RNF34 forms clusters and that a subset of these clusters is associated with GABAergic synapses. This association is also observed in the intact rat brain by electron microscopy immunocytochemistry. RNF34 is not expressed until the 2nd postnatal week of rat brain development, being highly expressed in some interneurons. Overexpression of RNF34 in hippocampal neurons decreases the density of γ2 GABAAR clusters and the number of GABAergic contacts that these neurons receive. Knocking down endogenous RNF34 with shRNA leads to increased γ2 GABAAR cluster density and GABAergic innervation. The results indicate that RNF34 regulates postsynaptic γ2-GABAAR clustering and GABAergic synaptic innervation by interacting with and ubiquitinating the γ2-GABAAR subunit promoting GABAAR degradation.  相似文献   

4.
The article by Merwin et al. in the November 2014 issue of GENETICS provides insight into ribosome biogenesis, an essential multistep process that involves myriad factors and three cellular compartments. The specific protein of interest in this study is low-temperature viability protein (Ltv1), which functions as a small ribosomal subunit maturation factor. The authors investigated its possible additional function in small-subunit nuclear export. This Primer provides information for students to help them analyze the paper by Merwin et al. (2014), including an overview of the authors’ research question and methods.Related article in GENETICS: Merwin, J. R., L. B. Bogar, S. B. Poggi, R. M. Fitch, A. W. Johnson, and D. E. Lycan, 2014 Genetic analysis of the ribosome biogenesis factor Ltv1 of Saccharomyces cerevisiae. Genetics 198: 1071–1085  相似文献   

5.
The F1F0-ATP synthase provides ∼90% of cardiac ATP, yet little is known regarding its regulation under normal or pathological conditions. Previously, we demonstrated that protein kinase Cδ (PKCδ) inhibits F1F0 activity via an interaction with the “d” subunit of F1F0-ATP synthase (dF1F0) in neonatal cardiac myocytes (NCMs) (Nguyen, T., Ogbi, M., and Johnson, J. A. (2008) J. Biol. Chem. 283, 29831–29840). We have now identified a dF1F0-derived peptide (NH2-2AGRKLALKTIDWVSF16-COOH) that inhibits PKCδ binding to dF1F0 in overlay assays. We have also identified a second dF1F0-derived peptide (NH2-111RVREYEKQLEKIKNMI126-COOH) that facilitates PKCδ binding to dF1F0. Incubation of NCMs with versions of these peptides containing HIV-Tat protein transduction and mammalian mitochondrial targeting sequences resulted in their delivery into mitochondria. Preincubation of NCMs, with 10 nm extracellular concentrations of the mitochondrially targeted PKCδ-dF1F0 interaction inhibitor, decreased 100 nm 4β-phorbol 12-myristate 13-acetate (4β-PMA)-induced co-immunoprecipitation of PKCδ with dF1F0 by 50 ± 15% and abolished the 30 nm 4β-PMA-induced inhibition of F1F0-ATPase activity. A scrambled sequence (inactive) peptide, which contained HIV-Tat and mitochondrial targeting sequences, was without effect. In contrast, the cell-permeable, mitochondrially targeted PKCδ-dF1F0 facilitator peptide by itself induced the PKCδ-dF1F0 co-immunoprecipitation and inhibited F1F0-ATPase activity. In in vitro PKC add-back experiments, the PKCδ-F1F0 inhibitor blocked PKCδ-mediated inhibition of F1F0-ATPase activity, whereas the facilitator induced inhibition. We have developed the first cell-permeable, mitochondrially targeted modulators of the PKCδ-dF1F0 interaction in NCMs. These novel peptides will improve our understanding of cardiac F1F0 regulation and may have potential as therapeutics to attenuate cardiac injury.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号