首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine-nucleotide exchange factor specific for eukaryotic initiation factor 2 (eIF2). Under stressed conditions, guanine-nucleotide exchange is strongly inhibited by the tight binding of phosphorylated eIF2 to eIF2B. Here, we report the crystal structure of the α subunit of human eIF2B at 2.65 Å resolution. The eIF2Bα structure consists of the N-terminal α-helical domain and the C-terminal Rossmann-fold-like domain. A positively charged pocket, whose entrance is about 15-17 Å in diameter, resides at the boundary between the two domains. A sulfate ion is located at the bottom of the pocket (about 16 Å in depth). The residues comprising the sulfate-ion-binding site are strictly conserved in eIF2Bα. Since this deep, wide pocket with the sulfate-ion-binding site is not conserved in distant homologues, including 5-methylthioribose 1-phosphate isomerases, these characteristics may be distinctive of eIF2Bα. Interestingly, the yeast eIF2Bα missense mutations that reduce the eIF2B sensitivity to phosphorylated eIF2 are mapped on the other side of the pocket. One of the three human eIF2Bα missense mutations that induce the lethal brain disorder vanishing white matter or childhood ataxia with central nervous system hypomyelination is mapped inside the pocket. The β and δ subunits of eIF2B are homologous to eIF2Bα and may have tertiary structures similar to the present eIF2Bα structure. The sulfate-ion-binding residues of eIF2Bα are well conserved in eIF2Bβ/δ. The abovementioned yeast and human missense mutations of eIF2Bβ/δ were also mapped on the eIF2Bα structure, which revealed that the human mutations are clustered on the same side as the pocket, while the yeast mutations reside on the opposite side. As most of the mutated residues are exposed on the surface of the eIF2B subunit structure, these exposed residues are likely to be involved in either the subunit interactions or the interaction with eIF2.  相似文献   

2.
The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.  相似文献   

3.
4.
DNA polymerase ε (Polε) is a multi-subunit polymerase that contributes to genomic stability via its roles in leading strand replication and the repair of damaged DNA. Here we report the ternary structure of the Polε catalytic subunit (Pol2) bound to a nascent G:C base pair (Pol2G:C). Pol2G:C has a typical B-family polymerase fold and embraces the template-primer duplex with the palm, fingers, thumb and exonuclease domains. The overall arrangement of domains is similar to the structure of Pol2T:A reported recently, but there are notable differences in their polymerase and exonuclease active sites. In particular, we observe Ca2+ ions at both positions A and B in the polymerase active site and also observe a Ca2+ at position B of the exonuclease site. We find that the contacts to the nascent G:C base pair in the Pol2G:C structure are maintained in the Pol2T:A structure and reflect the comparable fidelity of Pol2 for nascent purine-pyrimidine and pyrimidine-purine base pairs. We note that unlike that of Pol3, the shape of the nascent base pair binding pocket in Pol2 is modulated from the major grove side by the presence of Tyr431. Together with Pol2T:A, our results provide a framework for understanding the structural basis of high fidelity DNA synthesis by Pol2.  相似文献   

5.
6.
Highlights? Production of soluble NIK kinase domain ? Structures of apo murine and human NIK possess active conformation ? Structure of mNIK bound to inhibitors reveals conformational flexibility ? Inhibitor potency varies against mNIK and hNIK due to substitution in the active site  相似文献   

7.
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.  相似文献   

8.
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.  相似文献   

9.
Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca2+-depletion sensor STIM1. This is followed by a fast Ca2+·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp76 of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1.  相似文献   

10.
11.
Protection against reactive oxygen species is provided by the copper containing enzyme superoxide dismutase 1 (SOD1). The copper chaperone CCS is responsible for copper insertion into apo-SOD1. This role is impaired by an interaction between the second PDZ domain (PDZ2α) of the neuronal adaptor protein X11α and the third domain of CCS (McLoughlin et al. (2001) J. Biol. Chem., 276, 9303–9307). The solution structure of the PDZ2α domain has been determined and the interaction with peptides derived from CCS has been explored. PDZ2α binds to the last four amino acids of the CCS protein (PAHL) with a dissociation constant of 91 ± 2 μM. Peptide variants have been used to map the interaction areas on PDZ2α for each amino acid, showing an important role for the C-terminal leucine, in line with canonical PDZ-peptide interactions.Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
We have cloned and sequenced the fission yeast (Schizosaccharomyces pombe)fas1+gene, which encodes the fatty acid synthetase (FAS) β subunit, by applying a PCR technique to conserved regions in the β subunit of the α6β6types of FAS among different organisms. The deduced amino acid sequence of the Fas1 polypeptide, consisting of 2073 amino acids (Mr= 230,616), exhibits the 48.1% identity with the β subunit from the budding yeast (Saccharomyces cerevisiae). This subunit, with five different catalytic activities, bears four distinct domains, while the α subunit, the sequence of which was previously reported by Saitohet al.(S. Saitohet al.,1996,J. Cell Biol.134, 949–961), carries three domains. We have developed a co-expression system of the FAS α and β subunits by cotransformation of two expression vectors, containing thelsd1+/fas2+gene and thefas1+gene, into fission yeast cells. The isolated FAS complex showed quite high specific activity, of more than 4000 mU/mg, suggesting complete purification. Its molecular weight was determined by dynamic light scattering and ultracentrifugation analysis to be 2.1–2.4 × 106, and one molecule of the FAS complex was found to contain approximately six FMN molecules. These results indicate that the FAS complex fromS. pombeforms a heterododecameric α6β6structure. Electron micrographs of the negatively stained molecule suggest that the complex adopts a unique barrel-shaped cage architecture.  相似文献   

13.
Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time, the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys-454, -458, -459, and -244. Upon binding of glutathione to these cysteines, the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentrations above 0.5 mm. Deglutathionylation of the α subunit catalyzed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia and was associated with oxidative stress and ATP depletion. S-Glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.  相似文献   

14.
15.
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.  相似文献   

16.
The type VI secretion system (T6SS) is a specialized macromolecular complex dedicated to the delivery of protein effectors into both eukaryotic and bacterial cells. The general mechanism of action of the T6SS is similar to the injection of DNA by contractile bacteriophages. The cytoplasmic portion of the T6SS is evolutionarily, structurally and functionally related to the phage tail complex. It is composed of an inner tube made of stacked Hcp hexameric rings, engulfed within a sheath and built on a baseplate. This sheath undergoes cycles of extension and contraction, and the current model proposes that the sheath contraction propels the inner tube toward the target cell for effector delivery. The sheath comprises two subunits: TssB and TssC that polymerize under an extended conformation. Here, we show that isolated TssB forms trimers, and we report the crystal structure of a C-terminal fragment of TssB. This fragment comprises a long helix followed by a helical hairpin that presents surface-exposed charged residues. Site-directed mutagenesis coupled to functional assay further showed that these charges are required for proper assembly of the sheath. Positioning of these residues in the extended T6SS sheath structure suggests that they may mediate contacts with the baseplate.  相似文献   

17.
18.
Studies on altered integrin receptor expression during cardiac hypertrophy and heart failure requires accurate knowledge of the distributional pattern of integrins in myocardial cells. At present the general consensus is that in cardiac muscle the β1 integrin receptor is mainly localized to the same sarcolemmal domain as vinculin at Z-band levels (‘costamere’). Since most previous studies have been focusing on myocardial integrin distribution in lower mammals, the myocardial localization of the β1 integrin subunit was investigated in biopsies collected from the auricle of patients undergoing a coronary bypass operation. Non-invasive serial optical sectioning was carried out by immuno-laser scanning confocal microscopy. Double-labelling for vinculin/α-actinin, and the cytoplasmic domain for the β1 integrin subunit, showed that β1 integrin is deposited throughout both the vinculin/α-actinin domains and the non-vinculin/α-actinin domains. These results were supported by a semi-quantitative analysis in extended focus images of the latter preparations. Higher magnification views at the electron microscopical levels of the large, extracellular domain of the β1 integrin subunit disclosed a pronounced labelling in the form of a dense, irregular punctuate pattern that was distributed at Z-disc domains as well as along the entire sarcolemmal area between Z-discs. Our findings show that in human, myocardial cells, the β1 integrin receptor does not only localize to the surface membrane at the Z-disc level (‘costamere’ in cardiac muscle), but has a widespread distribution along the sarcolemma.  相似文献   

19.
Heart muscle contraction is regulated by Ca2+ binding to the thin filament protein troponin C. In cardiovascular disease, the myofilament response to Ca2+ is often altered. Compounds that rectify this perturbation are of considerable interest as therapeutics. Plant flavonoids have been found to provide protection against a variety of human illnesses such as cancer, infection, and heart disease. (−)-Epigallocatechin gallate (EGCg), the prevalent flavonoid in green tea, modulates force generation in isolated guinea pig hearts (Hotta, Y., Huang, L., Muto, T., Yajima, M., Miyazeki, K., Ishikawa, N., Fukuzawa, Y., Wakida, Y., Tushima, H., Ando, H., and Nonogaki, T. (2006) Eur. J. Pharmacol. 552, 123–130) and in skinned cardiac muscle fibers (Liou, Y. M., Kuo, S. C., and Hsieh, S. R. (2008) Pflugers Arch. 456, 787–800; and Tadano, N., Yumoto, F., Tanokura, M., Ohtsuki, I., and Morimoto, S. (2005) Biophys. J. 88, 314a). In this study we describe the solution structure of the Ca2+-saturated C-terminal domain of troponin C in complex with EGCg. Moreover, we show that EGCg forms a ternary complex with the C-terminal domain of troponin C and the anchoring region of troponin I. The structural evidence indicates that the binding site of EGCg on the C-terminal domain of troponin C is in the hydrophobic pocket in the absence of troponin I, akin to EMD 57033. Based on chemical shift mapping, the binding of EGCg to the C-terminal domain of troponin C in the presence of troponin I may be to a new site formed by the troponin C·troponin I complex. This interaction of EGCg with the C-terminal domain of troponin C·troponin I complex has not been shown with other cardiotonic molecules and illustrates the potential mechanism by which EGCg modulates heart contraction.Cardiovascular disease (CVD)2 is the number one cause of morbidity and mortality in western culture. In the United States, ∼1 in 3 deaths in 2004 were caused by CVD (1). In heart failure, the ability of the heart to distribute blood throughout the body is perturbed, and there is a growing interest to develop drugs that directly regulate the response of the myofilament to Ca2+. Regulation of muscle contraction is triggered by Ca2+ binding to troponin. The troponin complex is situated at regular intervals along the thin filament, which is made up of two elongated polymers, f-actin and tropomyosin. The backbone of the thin filament is composed of actin molecules arranged in a double helix with tropomyosin wound around actin as a coiled-coil. Anchored at every seventh actin molecule is the heterotrimeric troponin complex, which consists of troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnC is the Ca2+-binding subunit of troponin and has four EF-hand helix-loop-helix motifs. TnI is the inhibitory subunit of troponin. It regulates the actin-myosin cross-bridge formation by flipping between TnC and actin in a Ca2+-dependent manner. At low levels of cytosolic Ca2+, TnI is bound to actin, causing tropomyosin to sterically block the binding of the actomyosin cross-bridges. On the other hand, when Ca2+ concentration is high, TnI translocates from actin to TnC inducing tropomyosin to change its orientation on actin so that the actin-myosin interaction may occur. The subunit TnT fetters the troponin complex to the thin filament by way of its association with TnI (for reviews on contraction see Refs. 25).The large number of structural studies on troponin and the thin filament has helped gain insight into the molecular mechanism of muscle contraction. TnC is a dumbbell-shaped protein that consists of terminal domains connected by an elongated flexible linker, as shown by solution NMR (6). The overall folds of the terminal domains of skeletal TnC (sTnC) and cardiac TnC (cTnC) are very similar (79). The apo state of the N-domain of sTnC (sNTnC) and cTnC (cNTnC) reveals that the domain is in a “closed” conformation, such that the hydrophobic core of the protein is buried (8, 10, 11). In the skeletal system, sNTnC “opens” when two Ca2+ ions bind (8, 10, 11). Alternatively, cNTnC contains only one functional Ca2+-binding site, and its global conformation does not change as significantly as in sNTnC (11). Nonetheless, Ca2+ binding promotes the association of the switch region of cTnI (residues 147–163) with cNTnC. cTnI-(147–163) forms an α-helix when associated with cNTnC and has been elucidated by NMR in the solution structure of cNTnC·Ca2+·cTnI-(147–163) (12) and by the x-ray crystallography structure of cTnC·3Ca2+·cTnI·-(31–210)·cTnT-(183–288) (13). The interaction of cTnI-(147–163) with cNTnC·Ca2+ is essential to draw the inhibitory (cTnI-(128–147)) and C-terminal (cTnI-(163–210)) regions of cTnI away from actin. cTnI-(128–147) is not visualized in the cardiac structure, probably due to disorder (13). In the skeletal crystal structure of sTnC·4Ca2+·sTnI-(1–182)·sTnT-(156–262), however, the inhibitory region of sTnI is visualized and makes electrostatic contacts with the central helix connecting the N- and C-terminal lobes of cTnC (14). The C-domain (CTnC) of both sTnC and cTnC has two functional binding sites for Ca2+ and remains largely unstructured without Ca2+ bound. The folding of this domain occurs in the presence of Ca2+ (15, 16). Throughout the relaxation-contraction cycle, cCTnC is Ca2+-saturated with both Ca2+-binding sites occupied (cCTnC·2Ca2+) and is associated with the anchoring region of cTnI (cTnI-(34–71)). The crystal structure of cTnC·3Ca2+·cTnI·-(31–210)·cTnT-(183–288) shows cTnI-(34–71) is α-helical when bound with cCTnC·2Ca2+(13). The interaction of cCTnC·2Ca2+ with cTnI-(34–71) is the primary site in which cTnC is tethered to the thin filament.In light of the importance of the Ca2+-dependent cTnI-cTnC interaction in the signaling of muscle contraction, the design of drugs that modulate this interaction would be useful in the treatment of heart disease. Compounds that treat CVD through modulation of the activity of cTnC are called Ca2+ sensitizers or desensitizers, depending on whether they positively or negatively influence its function. These drugs are safer than other currently prescribed medicines that alter the cytosolic Ca2+ homeostasis (such as milrinone and dobutamine), which may cause arrhythmia or death with prolonged usage.The potential therapeutic advantage of Ca2+ (de)sensitizers has led to the development of a number of compounds that target cTnC. Compounds have been identified that elicit their activity through binding either cNTnC or cCTnC. Levosimendan and pimobendan are examples of molecules that increase heart muscle contractility through binding to cNTnC. Conversely, the molecule W7 decreases contractility via its interaction with cNTnC. For recent reviews on the molecular mechanism of these compounds and others see Refs. 1719. The discovery of small molecules that bind to cCTnC to elicit their Ca2+-sensitizing effects suggests that cCTnC is also a suitable target for the development of therapeutics. The Ca2+ sensitizer, EMD 57033, is approved for the treatment for heart failure in dogs and binds to cCTnC·2Ca2+(20). In the NMR structure of cCTnC·2Ca2+·EMD 57033, EMD 57033 is associated in the hydrophobic cavity of cCTnC·2Ca2+ (21). The interaction of EMD 57033 with cCTnC is stereospecific for the (+)-enantiomer and explains why the (−)-enantiomer is inactive (22). Because EMD 57033 has been shown to bind cCTnC·2Ca2+ concurrently with cTnI-(128–147) but not with cTnI-(34–71) (23), one postulate is that EMD 57033 acts as a Ca2+ sensitizer by weakening the interaction of cTnI-(34–71) with cCTnC·2Ca2+, thus increasing the propensity of cTnI-(128–147) to bind cCTnC·2Ca2+ in vivo. The dilated cardiomyopathy (DCM) mutation, G159D, of cCTnC has renewed interest in the role of the C-lobe for regulation in contraction. The mutation has been identified to decrease the sensitivity of the thin filament to Ca2+ (24). The source of the DCM phenotype of G159D might come from the modulation of the interaction of cCTnC·2Ca2+ with cTnI-(34–71) (25).Green tea (Camellia sinensis) is one of the most widely consumed beverages in the world, and several epidemiological studies have linked the consumption of tea with a decrease in CVD (26, 27). (−)-Epigallocatechin gallate (EGCg) is a polyphenol that exists abundantly in unfermented teas and has been identified as a modulator of heart contraction through its interaction with cTnC (2830). Here we use NMR spectroscopy to elucidate the three-dimensional structure of the cCTnC·2Ca2+·EGCg complex. The solution structure reveals that EGCg binds at the hydrophobic core of cCTnC inducing a small structural “opening.” We also use two-dimensional NMR spectroscopy to monitor the binding of EGCg to cCTnC·2Ca2+ and cCTnC·2Ca2+·cTnI-(34–71). Because EGCg and cTnI-(34–71) can bind cCTnC concurrently, the inotropic effect of EGCg may stem from its modulation of the cTnI-(34–71)-cCTnC·2Ca2+ interaction. The solution structure of cCTnC·2Ca2+·EGCg provides insight into the mechanism in which EGCg might influence heart contraction. These results taken with previous research on the Ca2+ sensitizer EMD 57033 and the DCM mutation G159D bring into question the dogma that cNTnC is the exclusive site for regulation of contraction in cTnC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号