首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The members of the 70 kDa-heat shock proteins (HSP70) family play numerous fundamental functions in the cell such as promoting the assembly of multimeric complexes or helping the correct folding of nascent proteins to take place. In numerous previous studies we demonstrated that Hsp70 and its constitutive isoform Hsc70 are endowed of a GlcNAc-binding activity. The molecular modeling of the substrate binding domain of Hsc70 and in silico docking experiments using Ser/Thr-O-GlcNAc motifs allowed to define the potential carbohydrate-recognition region and to point out the crucial position of Arg469 as an amino-acid directly interacting with the sugar moiety. We cloned a flagged Hsc70 in a pCMV.SPORT6 vector and we showed that the mutation R469A decreased the GlcNAc-binding property of the chaperone of around 70%. This is the first work reporting the localization of the GlcNAc-binding domain of a member of the HSP70 family.  相似文献   

2.
The microtubule-associated protein Tau plays a crucial role in regulating the dynamic stability of microtubules during neuronal development and synaptic transmission. In a group of neurodegenerative diseases, such as Alzheimer disease and other tauopathies, conformational changes in Tau are associated with the initial stages of disease pathology. Folding of Tau into the MC1 conformation, where the amino acids at residues 7–9 interact with residues 312–342, is one of the earliest pathological alterations of Tau in Alzheimer disease. The mechanism of this conformational change in Tau and the subsequent effect on function and association to microtubules is largely unknown. Recent work by our group and others suggests that members of the Hsp70 family play a significant role in Tau regulation. Our new findings suggest that heat shock cognate (Hsc) 70 facilitates Tau-mediated microtubule polymerization. The association of Hsc70 with Tau was rapidly enhanced following treatment with microtubule-destabilizing agents. The fate of Tau released from the microtubule was found to be dependent on ATPase activity of Hsc70. Microtubule destabilization also rapidly increased the MC1 folded conformation of Tau. An in vitro assay suggests that Hsc70 facilitates formation of MC1 Tau. However, in a hyperphosphorylating environment, the formation of MC1 was abrogated, but Hsc70 binding to Tau was enhanced. Thus, under normal circumstances, MC1 formation may be a protective conformation facilitated by Hsc70. However, in a diseased environment, Hsc70 may preserve Tau in a more unstructured state, perhaps facilitating its pathogenicity.  相似文献   

3.
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.  相似文献   

4.
Induction of heat shock proteins (Hsps), especially the 70-kDa family, is well observed in nervous tissues in response to various stressful conditions. By using rat astrocytes in primary culture, the expression of the inducible (Hsp70) and the constitutive (Hsc70) 70-kDa Hsps immunoreactivity of cells exposed to hypoxic conditions has been investigated. We observed that exposure of astroglial cells to an hypoxic-normoxic sequence induces a significant decrease of Hsc70 immunoreactivity. The presence of the heat inducible stress protein Hsp70 is never observed in hypoxic cells not in control. Hsc 70 lowering is associated with ultrastructural alterations characterized by mitochondria swelling, formation of vacuoles and accumulation of dense material in the cell cytoplasm. The effects of addition of almitrine to the culture medium before and during hypoxia on Hsps immunoreactivity have been examined. The presence of the drug prevents the decrease of Hsc 70 immunoreactivity induced by hypoxia. Furthermore, some ultrastructural improvement is observed in astroglial cells treated with almitrine suggesting some protecting role of Hsc70 on cell damage induced by hypoxia.  相似文献   

5.
Intraneuronal accumulation of phosphorylated Tau protein is a molecular pathology found in many forms of dementia, including Alzheimer disease. Research into possible mechanisms leading to the accumulation of modified Tau protein and the possibility of removing Tau protein from the system have revealed that the chaperone protein system can interact with Tau and mediate its degradation. Hsp70/Hsc70, a member of the chaperone protein family, interacts with Tau protein and mediates proper folding of Tau and can promote degradation of Tau protein under certain circumstances. However, because Hsp70/Hsc70 has many binding partners that can mediate its activity, there is still much to discover about how Hsp70 acts in vivo to regulate Tau protein. BAG-1, an Hsp70/Hsc70 binding partner, has been implicated as a mediator of neuronal function. In this work we show that BAG-1 associates with Tau protein in an Hsc70-dependent manner. Overexpression of BAG-1 induced an increase in Tau levels, which is shown to be due to an inhibition of protein degradation. We further show that BAG-1 can inhibit the degradation of Tau protein by the 20 S proteasome but does not affect the ubiquitination of Tau protein. RNA-mediated interference depletion of BAG-1 leads to a decrease in total Tau protein levels as well as promoting hyperphosphorylation of the remaining protein. Induction of Hsp70 by heat shock enhanced the increase of Tau levels in cells overexpressing BAG-1 but induced a decrease of Tau levels in cells that were depleted of BAG-1. Finally, BAG-1 is highly expressed in neurons bearing Tau tangles in a mouse model of Alzheimer disease. This data suggests a molecular mechanism through which Tau protein levels are regulated in the cell and possible consequences for the pathology and treatment of Alzheimer disease.  相似文献   

6.
Mouse A6 mesoangioblasts express Hsp70 even in the absence of cellular stress. Its expression and its intracellular localization were investigated under normal growth conditions and under hyperthermic stress. Immunofluorescence assays indicated that without any stress a fraction of Hsp70 co-localized with actin microfilaments, in the cell cortex and in the contractile ring of dividing cells, while the Hsc70 chaperone did not. Hsp70 immunoprecipitation assays confirmed that a portion of Hsp70 binds actin. Immunoblot assays showed that both proteins were present in the nucleus. After heat treatment Hsp70 and actin continued to co-localize in the leading edge of A6 cells but not on microfilaments. Although Hsp70 and Hsc70 are both basally synthesized they showed different cellular distribution, suggesting an Hsp70 different activity respect to the Hsc70 chaperone. Moreover, we found Hsp70 in the culture medium as it has been described in other cell types.  相似文献   

7.
Abstract

The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.  相似文献   

8.
Amplification and overexpression of murine double minute (MDM2) has been observed in several human cancers. Some chemotherapeutic agents cause MDM2 ubiquitination and degradation in a proteasome-dependent system. In addition to the proteasome system, chaperone-mediated autophagy (CMA) is a lysosomal pathway for selective misfolded protein degradation. Molecular chaperone heat shock cognate 70 protein (Hsc70) recognizes the misfolded proteins, which are then delivered to lysosome-associated membrane protein type 2A (LAMP2A) for lysosomal degradation. Our previous study reported that hispolon was able to induce cell apoptosis and downregulate MDM2 expression. In this study, our results showed that the proteasome inhibitor, MG132, could not inhibit hispolon-induced MDM2 downregulation. In contrast, both inhibition of lysosomes with NH4Cl and inhibition of LAMP2A using siRNA partially attenuated hispolon-induced MDM2 downregulation. To determine whether Hsc70 recognizes MDM2 on amino acids 135-141, SMP14 antibody was used to compete with Hsc70 for interaction with MDM2. After Hsc70 knockdown, SMP14 antibody immunoprecipitated increased MDM2. We also found that hispolon induced increased association of Hsp70, Hsc70, Hsp90 and LAMP2A with MDM2. This association was inhibited in cells pretreated with geldanamycin (GA), an Hsp90 inhibitor. GA also attenuated hispolon-induced MDM2 downregulation. Meanwhile, inhibition of Hsc70 using siRNA attenuated hispolon-induced MDM2 downregulation. Our study provides the first example of the ability of hispolon to mediate MDM2 downregulation in lysosomes through the CMA pathway.  相似文献   

9.
10.
Chaperone signalling complexes in Alzheimer's disease   总被引:1,自引:0,他引:1  
Molecular chaperones and heat shock proteins (Hsp) have emerged as critical regulators of proteins associated with neurodegenerative disease pathologies. The very nature of the chaperone system, which is to maintain protein quality control, means that most nascent proteins come in contact with chaperone proteins. Thus, amyloid precursor protein (APP), members of the gamma-secretase complex (presenilin 1 [PS1] collectively), the microtubule-associated protein tau (MAPT) as well as a number of neuroinflammatory components are all in contact with chaperones from the moment of their production. Chaperones are often grouped together as one machine presenting abnormal or mutant proteins to the proteasome for degradation, but this is not at all the case. In fact, the chaperone family consists of more than 100 proteins in mammalian cells, and the primary role for most of these proteins is to protect clients following synthesis and during stress; only as a last resort do they facilitate protein degradation. To the best of our current knowledge, the chaperone system in eukaryotic cells revolves around the ATPase activities of Hsp70 and Hsp90, the two primary chaperone scaffolds. Other chaperones and co-chaperones manipulate the ATPase activities of Hsp70 and Hsp90, facilitating either folding of the client or its degradation. In the case of Alzheimer's disease (AD), a number of studies have recently emerged describing the impact that these chaperones have on the proteotoxic effects of tau and amyloid-β accumulation. Here, we present the current understandings of chaperone biology and examine the literature investigating these proteins in the context of AD.  相似文献   

11.
It is becoming increasingly apparent that heat shock proteins play an important role in the survival of Plasmodium falciparum against temperature changes associated with its passage from the cold-blooded mosquito vector to the warm-blooded human host. Interest in understanding the possible role of P. falciparum Hsp70s in the life cycle of the parasite has led to the identification of six HSP70 genes. Although most research attention has focused primarily on one of the cytosolic Hsp70s (PfHsp70-1) and its endoplasmic reticulum homolog (PfHsp70-2), further functional insights could be inferred from the structural motifs exhibited by the rest of the Hsp70 family members of P. falciparum. There is increasing evidence that suggests that PfHsp70-1 could play an important role in the life cycle of P. falciparum both as a chaperone and immunogen. In addition, P. falciparum Hsp70s and Hsp40 partners are implicated in the intracellular and extracellular trafficking of proteins. This review summarizes data emerging from studies on the chaperone role of P. falciparum Hsp70s, taking advantage of inferences gleaned from their structures and information on their cellular localization. The possible associations between P. falciparum Hsp70s with their cochaperone partners as well as other chaperones and proteins are discussed.  相似文献   

12.
BAG-1 modulates the chaperone activity of Hsp70/Hsc70.   总被引:29,自引:3,他引:26  
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

13.
The heat shock protein 90 (Hsp90) is a molecular chaperone central to client protein folding and maturation in eukaryotic cells. During its chaperone cycle, Hsp90 undergoes ATPase-coupled large-scale conformational changes between open and closed states, where the N-terminal and middle domains of the protein form a compact dimerized conformation. However, the molecular principles of the switching motion between the open and closed states remain poorly understood. Here we show by integrating atomistic and coarse-grained molecular simulations with small-angle X-ray scattering experiments and NMR spectroscopy data that Hsp90 exhibits rich conformational dynamics modulated by the charged linker, which connects the N-terminal with the middle domain of the protein. We show that the dissociation of these domains is crucial for the conformational flexibility of the open state, with the separation distance controlled by a β-sheet motif next to the linker region. Taken together, our results suggest that the conformational ensemble of Hsp90 comprises highly extended states, which could be functionally crucial for client processing.  相似文献   

14.
The stress response in injured brain is well characterized after experimental ischemic and traumatic brain injury (TBI); however, the induction and regulation of the stress response in humans after TBI remains largely undefined. Accordingly, we examined injured brain tissue from adult patients (n = 8) that underwent emergent surgical decompression after TBI, for alterations in the inducible 72-kDa heat shock protein (Hsp70), the constitutive 73-kDa heat shock protein (Hsc70), and isoforms of the chaperone cofactor BAG-1. Control samples (n = 6) were obtained postmortem from patients dying of causes unrelated to CNS trauma. Western blot analysis showed that Hsp70, but not Hsc70, was increased in patients after TBI versus controls. Both Hsp70 and Hsc70 coimmunoprecipitated with the cofactor BAG-1. The 33 and 46, but not the 50-kDa BAG-1 isoforms were increased in patients after TBI versus controls. The ratio of the 46/33-kDa isoforms was increased in TBI versus controls, suggesting negative modulation of Hsp70/Hsc70 protein refolding activity in injured brain. These data implicate induction of the stress response and its modulation by the chaperone cofactor and Bcl-2 family member BAG-1, after TBI in humans.  相似文献   

15.
Hsp105alpha is a mammalian member of the HSP105/110 family, a diverged subgroup of the HSP70 family. Hsp105alpha associates with Hsp70/Hsc70 as complexes in vivo and regulates the chaperone activity of Hsp70/Hsc70 negatively in vitro and in vivo. In this study, we examined the mechanisms by which Hsp105alpha regulates Hsc70 chaperone activity. Using a series of deletion mutants of Hsp105alpha and Hsc70, we found that the interaction between Hsp105alpha and Hsc70 was necessary for the suppression of Hsc70 chaperone activity by Hsp105alpha. Furthermore, Hsp105alpha and deletion mutants of Hsp105alpha that interacted with Hsc70 suppressed the ATPase activity of Hsc70, with the concomitant appearance of ATPase activity of Hsp105alpha. As the ATPase activity of Hsp70/Hsc70 is essential for the efficient folding of nonnative protein substrates, Hsp105alpha is suggested to regulate the substrate binding cycle of Hsp70/Hsc70 by inhibiting the ATPase activity of Hsp70/Hsc70, thereby functioning as a negative regulator of the Hsp70/Hsc70 chaperone system.  相似文献   

16.
The aggregation of α-synuclein (α-Syn), the primary component of Lewy bodies, into high molecular weight assemblies is strongly associated with Parkinson disease. This event is believed to result from a conformational change within native α-Syn. Molecular chaperones exert critical housekeeping functions in vivo including refolding, maintaining in a soluble state, and/or pacifying protein aggregates. The influence of the stress-induced heat shock protein 70 (Hsp70) on α-Syn aggregation has been notably investigated. The constitutively expressed chaperone Hsc70 acts as an antiaggregation barrier before cells are overwhelmed with α-Syn aggregates and Hsp70 expression induced. Here, we investigate the interaction between Hsc70 and α-Syn, the consequences of this interaction, and the role of nucleotides and co-chaperones Hdj1 and Hdj2 as modulators. We show that Hsc70 sequesters soluble α-Syn in an assembly incompetent complex in the absence of ATP. The affinity of Hsc70 for soluble α-Syn diminishes upon addition of ATP alone or together with its co-chaperones Hdj1 or Hdj2 allowing faster binding and release of client proteins thus abolishing α-Syn assembly inhibition by Hsc70. We show that Hsc70 binds α-Syn fibrils with a 5-fold tighter affinity compared with soluble α-Syn. This suggests that Hsc70 preferentially interacts with high molecular weight α-Syn assemblies in vivo. Hsc70 binding certainly has an impact on the physicochemical properties of α-Syn assemblies. We show a reduced cellular toxicity of α-Syn fibrils coated with Hsc70 compared with "naked" fibrils. Hsc70 may therefore significantly affect the cellular propagation of α-Syn aggregates and their spread throughout the central nervous system in Parkinson disease.  相似文献   

17.
Hsp70 molecular chaperones have been shown to play an important role in helping cells to cope with adverse environments, especially in response to high temperatures. The molecular chaperone function of Hsc70 at low temperature was investigated. A cold-inducible spinach cytosolic Hsc70 was subcloned into a protein expression vector and the recombinant protein was expressed in bacterial cells. Recombinant Hsc70 bound a permanently unfolded substrate: alpha-carboxymethylated lactalbumin (CMLA) in the presence of 3 mM ATP and MgCl(2) at low temperature (4 and -4 degrees C). Radiolabeling with (35)S-Met and (35)S-Cys and immunoprecipitation with cytosolic Hsc70 monoclonal antibodies showed that there were several proteins co-immunoprecipitated at low temperature (4 and -4 degrees C) but not at room temperature. Enhanced co-purification of sHsp17.7 with Hsc70 at low temperature was observed and suggests that co-chaperone interactions can contribute to molecular chaperone function during cold stress. These results suggest that the molecular chaperone Hsc70 may have a functional role in plants during low temperature stress.  相似文献   

18.
Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.  相似文献   

19.
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.  相似文献   

20.
The olfactory bulb is one of the most vulnerable brain regions in age‐related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here, we describe age‐related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2–4 months. To model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro‐oxidant paraquat. Toxin‐induced increases were observed in Hsp70, Hsp25, and Hsp32. To determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号