首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During periodontal regeneration, multiple cell types can invade the wound site, thereby leading to repair. Cell motility requires interactions mediated by integrin receptors for the extracellular matrix (ECM), which might be useful in guiding specific cell populations into the periodontal defect. Our data demonstrate that fibroblasts exhibit differential motility when grown on ECM proteins. Specifically, gingival fibroblasts are twice as motile as periodontal ligament fibroblasts, whereas osteoblasts are essentially non-motile. Collagens promote the greatest motility of gingival fibroblasts in the following order: collagen III>collagen V>collagen I. Differences in motility do not correlate with cell proliferation or integrin expression. Osteoblasts display greater attachment to collagens than does either fibroblast population, but lower motility. Gingival fibroblast motility on collagen I is generally mediated by α2 integrins, whereas motility on collagen III involves α1 integrins. Other integrins (α10 or α11) may also contribute to gingival fibroblast motility. Thus, ECM proteins do indeed differentially promote the cell motility of periodontal cells. Because of their greater motility, gingival fibroblasts have more of a potential to invade periodontal wound sites and to contribute to regeneration. This finding may explain the formation of disorganized connective tissue masses rather than the occurrence of the true regeneration of the periodontium. This research was supported by the Louisiana Board of Regents through the Millennium Trust Health Excellence Fund, HEF-(2000-05)-04.  相似文献   

2.
Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.  相似文献   

3.
4.
Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury.  相似文献   

5.
Guo F  Carter DE  Leask A 《PloS one》2011,6(5):e19756
Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin.  相似文献   

6.
The ability of axolotls to regenerate their limbs is almost legendary. In fact, urodeles such as the axolotl are the only vertebrates that can regenerate multiple structures like their limbs, jaws, tail, spinal cord, and skin (the list goes on) throughout their lives. It is therefore surprising to realize, although we have known of their regenerative potential for over 200 years, how little we understand the mechanisms behind this achievement of adult tissue morphogenesis. Many observations can be drawn between regeneration and other disciplines such as development and wound healing. In this review, we present new developments in functional analysis that will help to address the role of specific genes during the process of regeneration. We also present an analysis of the resemblance between wound healing and regeneration, and discuss whether axolotls are superhealers. A better understanding of these animals' regenerative capacity could lead to major benefits by providing regenerative medicine with directions on how to develop therapeutic approaches leading to regeneration in humans.  相似文献   

7.
Remodeling of the extracellular matrix by fibroblasts is an important step in the process of wound healing and tissue repair. We compared the behavior of fibroblasts from two different tissues, dermis and gingiva, in three-dimensional lattices made of two different extracellular matrix macromolecules, collagen and fibrin. Cells were grown in monolayer cultures from normal skin or gingiva and seeded in three-dimensional lattices made of either collagen or fibrin. Photonic and scanning electron microscopy did not reveal any morphological differences between the two types of fibroblasts in both sets of lattices. Both types of fibroblasts retracted collagen lattices similarly and caused only a slight degradation of the collagen substratum. By contrast, when seeded in fibrin lattices, gingival fibroblasts completely digested their substratum in less than 8 days, whereas only a slight fibrin degradation was observed with dermal fibroblasts. The ability of gingival but not dermal fibroblasts to express high levels of tissue plasminogen activators (tPA) when cultured in fibrin lattices was assessed on an immunological basis. Also, deprivation of plasminogen-contaminating fibrinogen preparations or use of tPA inhibitors markedly inhibited both fibrinolysis and retraction rates of fibrin lattices by gingival fibroblasts. Casein-zymography confirmed the intense proteolytic activity induced by fibrin in gingival fibroblasts. It was inhibited by aprotinin and phenyl methylsulfonyl fluoride (PMSF), two non-specific inhibitors of serine proteinases, and by η-amino-caproic acid (ηACA), an inhibitor of plasminogen activators. Monolayer cultures exhibited only trace amounts of caseinolytic activity. Our results demonstrate that the expression of proteinases by fibroblasts is dependent not only on their tissue origin but also on the surrounding extracellular matrix. The intense fibrinolytic activity of gingival fibroblasts in fibrin lattices may explain partially the high rate of healing clinically observed in gingiva. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The resurgence of larval biotherapy as a debridement tool in wound management has been accompanied by several clinical reports highlighting concomitant tissue regeneration. Studies employing in vitro cell motility assays have found that purified excretory/secretory (ES) products from Greenbottle larvae (blowfly, Lucilia sericata) are motogenic for human dermal fibroblasts when used as a supplement in culture media. The objective of the present study was to determine whether ES delivered using a prototype hydrogel wound dressing induced similar motogenic effects on fibroblastic (3T3) and epithelial cells (HaCaTs) comprising a scratched-monolayer wound model. Quantitative analysis by MTT assay failed to detect significant mitogenic effects of ES on either cell type. Quantitative image analysis revealed that ES exposure markedly accelerated wound closure through a motogenic effect on both fibroblasts and keratinocytes. Quantitative histochemical analysis detected significantly higher phosphotyrosine (pTyr) expression in ES-exposed cell cultures than in controls; moreover immunocytochemistry revealed conspicuously raised levels of pTyr expression in cells located at the wound margin. By attenuation with a panel of enzyme inhibitors these effects were attributed to the protease components of ES. The present results suggest that controlled delivery of ES as a follow-up to maggot debridement therapy may be an effective therapeutic option for stimulation of tissue regeneration in wound management.  相似文献   

9.
Murine dermis contains functionally and spatially distinct fibroblast lineages that cease to proliferate in early postnatal life. Here, we propose a model in which a negative feedback loop between extracellular matrix (ECM) deposition and fibroblast proliferation determines dermal architecture. Virtual‐tissue simulations of our model faithfully recapitulate dermal maturation, predicting a loss of spatial segregation of fibroblast lineages and dictating that fibroblast migration is only required for wound healing. To test this, we performed in vivo live imaging of dermal fibroblasts, which revealed that homeostatic tissue architecture is achieved without active cell migration. In contrast, both fibroblast proliferation and migration are key determinants of tissue repair following wounding. The results show that tissue‐scale coordination is driven by the interdependence of cell proliferation and ECM deposition, paving the way for identifying new therapeutic strategies to enhance skin regeneration.  相似文献   

10.
11.
Adult mesenchymal stem cells (MSCs) have the capacity for self-renewal and for differentiating into a variety of cells and tissues. They may leave their niche to migrate to remote tissues and play a critical role in wound repair and tissue regeneration. Because of their multipotency, easy isolation and culture, highly expansive potential, and immunosuppression properties, these cells may be an attractive therapeutic tool for regenerative medicine and tissue engineering. Several studies have indicated a contribution of MSCs to reconstituting skin in cutaneous wounds, but problems still need resolution before MSCs can be widely used clinically. This review focuses mainly on the benefits of MSCs in skin wound healing and tissue regeneration and on the questions that remain to be answered before MSCs can be used in clinical practice. This study was supported in part by the National Natural Science Foundation of China (30730090, 30672176, 30500194) and by State Key Development Program of Basic Research of China (973 Program, 2005CB522603).  相似文献   

12.
Involvement of the endocannabinoid system in periodontal healing   总被引:1,自引:0,他引:1  
Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.  相似文献   

13.
《Cytotherapy》2021,23(11):961-973
Mesenchymal stromal cells (MSCs) are multi-potent stromal-derived cells capable of self-renewal that possess several advantageous properties for wound healing, making them of interest to the field of dermatology. Research has focused on characterizing the unique properties of MSCs, which broadly revolve around their regenerative and more recently discovered immunomodulatory capacities. Because of ease of harvesting and expansion, differentiation potential and low immunogenicity, MSCs have been leading candidates for tissue engineering and regenerative medicine applications for wound healing, yet results from clinical studies have been variable, and promising pre-clinical work has been difficult to reproduce. Therefore, the specific mechanisms of how MSCs influence the local microenvironment in distinct wound etiologies warrant further research. Of specific interest in MSC-mediated healing is harnessing the secretome, which is composed of components known to positively influence wound healing. Molecules released by the MSC secretome can promote re-epithelialization and angiogenesis while inhibiting fibrosis and microbial invasion. This review focuses on the therapeutic interest in MSCs with regard to wound healing applications, including burns and diabetic ulcers, with specific attention to the genetic skin disease recessive dystrophic epidermolysis bullosa. This review also compares various delivery methods to support skin regeneration in the hopes of combating the poor engraftment of MSCs after delivery, which is one of the major pitfalls in clinical studies utilizing MSCs.  相似文献   

14.
Human collagenase-3 (matrix metalloproteinase 13 (MMP-13)) is characterized by exceptionally wide substrate specificity and restricted tissue specific expression. Human skin fibroblasts in culture express MMP-13 only when they are in three-dimensional collagen (Ravanti, L., Heino, J., López-Otín, C., and K?h?ri. V.-M. (1999) J. Biol. Chem. 274, 2446-2455). Here we show that MMP-13 is expressed by fibroblasts during normal human gingival wound repair. Expression of MMP-13 by human gingival fibroblasts cultured in monolayer or in collagen gel was induced by transforming growth factor-beta1 (TGF-beta1). Treatment of gingival fibroblasts with TGF-beta1 activated two distinct mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase 1/2 (ERK1/2) in 15 min and p38 MAPK in 1 and 2 h. Induction of MMP-13 expression by TGF-beta1 was blocked by SB203580, a specific inhibitor of p38 MAPK, but not by PD98059, a selective inhibitor of ERK1/2 activation. Adenovirus-mediated expression of dominant negative p38alpha and c-Jun potently inhibited induction of MMP-13 expression in gingival fibroblasts by TGF-beta1. Infection of gingival fibroblasts with adenovirus for constitutively active MEK1 resulted in activation of ERK1/2 and JNK1 and up-regulation of collagenase-1 (MMP-1) and stromelysin-1 (MMP-3) production but did not induce MMP-13 expression. In addition, activation of p38 MAPK by constitutively active MKK6b or MKK3b was not sufficient to induce MMP-13 expression. These results show that TGF-beta-elicited induction of MMP-13 expression by gingival fibroblasts is dependent on the activity of p38 MAPK and the presence of functional AP-1 dimers. These observations demonstrate a fundamental difference in the regulation of collagenolytic capacity between gingival and dermal fibroblasts and suggest a role for MMP-13 in rapid turnover of collagenous matrix during repair of gingival wounds, which heal with minimal scarring.  相似文献   

15.
Regeneration therapy for oral disease   总被引:1,自引:0,他引:1  
Kamoi K  Iino M  Ishiguro H 《Human cell》2006,19(2):76-82
The aim of this paper is to provide a review of the current understanding of the mechanisms, cell and factors required for regeneration and restoration of periodontal tissue around natural teeth. Periodontal regeneration is a complex multifactorial process involving cell populations: periodontal ligament cells, bone cells, gingival fibroblasts and epithelial cells. This paper describes bone graft, guided tissue regeneration and enamel matrix derivative with the application of growth factors.  相似文献   

16.
Chemokine changes during oral wound healing   总被引:1,自引:0,他引:1  
The oral mucosa is susceptible to tissue injury from many causes, including infection, autoimmune disorders, surgical and accidental trauma, and gingival and periodontal inflammation; however, little is known about the events that influence wound healing in the mouth. Recent studies in non-oral tissues have implicated immune system-derived factors, in particular chemokines, in the wound healing process. Tissues from mice with experimental gingival wounds were studied for expression of genes for four chemokine ligands or receptors (CCL19, CCL20, CCL25, and CCR5) that are important in leukocyte trafficking or inflammation. Notably, during the peak phase of wound healing, chemokine gene expression was up-regulated for CCL19, CCL20, and CCL25, and down-regulation of CCR5, suggesting an orchestrated process of chemokine-mediated recruitment or retention of lymphocytes and macrophages into wound areas, while simultaneously suppressing a potentially adverse inflammatory response. These findings have implications for developing therapeutic strategies aimed at promoting more effective tissue healing at oral surfaces.  相似文献   

17.
In a recent article, the authors provide a detailed summary of the characteristics and biological functions of mesenchymal stem cells (MSCs), as well as a discussion on the potential mechanisms of action of MSC-based therapies. They describe the morphology, biogenesis, and current isolation techniques of exosomes, one of the most important fractions of the MSC-derived secretome. They also summarize the characteristics of MSC-derived exosomes and highlight their functions and therapeutic potential for tissue/organ regeneration and for kidney, liver, cardiovascular, neurological, and musculoskeletal diseases, as well as cutaneous wound healing. Despite the fact that MSCs are regarded as an important pillar of regenerative medicine, their regenerative potential has been demonstrated to be limited in a number of pathological conditions. The negative effects of MSC-based cell therapy have heightened interest in the therapeutic use of MSC-derived secretome. On the other hand, MSC-derived exosomes and microvesicles possess the potential to have a significant impact on disease development, including cancer. MSCs can interact with tumor cells and promote mutual exchange and induction of cellular markers by exchanging secretome. Furthermore, enzymes secreted into and activated within exosomes can result in tumor cells acquiring new properties. As a result, therapeutic applications of MSC-derived secretomes must be approached with extreme caution.  相似文献   

18.
Su GH  Ye JX  You SW 《生理科学进展》2001,32(2):101-106
本综述重点阐述了移植周围神经或其组织成分雪旺细胞、成纤维细胞和神经营养因子,改善成年哺乳动物中枢神经系统抑制神经再生的微环境、增强受损神经元的内在再生潜力,以促进细胞损伤后的存活和轴突再生。  相似文献   

19.
When a number of experimental studies in bioelectromagnetics were reviewed, those in which weak, exogenous extremely low frequency (ELF) fields were applied in fixed juxtaposition to their target tissues, were found to initiate mitogenesis or mitogenesis-related signals more successfully than when the target tissue moved freely during the irradiation. It is suggested that ELF fields in fixed juxtaposition to their target tissue and implanted foreign bodies or endogenous tissues with a significant zeta potential, mimic bioelectric fields generated at wounds. When the potential is high enough, they assist healing by moving cells into the wound and stimulating quiescent cells at the wound margin to cycle. Electrophoresis may help the initial migration of cells into the wound to form a clot, and migration of fibroblasts and epithelial cells from the wound margin. When exposed for a long time in a fixed juxtaposition to a potential gradient too weak to show in situ microelectrophoresis along the cell membrane surface, surface particles may coalesce to form microclusters, where like-charged surface particles are in close proximity, and growth factor receptor oligomerization and other cycle-initiating reactions are facilitated. Bioelectromagnetics 18:341–348, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
间充质干细胞(mesenchymal stem cell,MSCs)是衍生自中胚层的多能细胞,可产生多种间充质谱系,包括成骨细胞、脂肪细胞、成软骨细胞和肌细胞。MSCs还具有分泌多种细胞因子的能力,可促进血管生成、上皮再生等,在再生医学领域具有巨大的潜力。研究证实,MSCs可通过分化为多种细胞类型促进组织再生,加速伤口愈合;通过分泌细胞因子改善组织纤维化;还可通过携带载体药物诱导肿瘤细胞的凋亡,抑制肿瘤的发展。然而MSCs的成纤维化潜能和促进肿瘤生长的能力降低了MSCs应用于临床治疗的安全性。总结了MSCs在肿瘤、慢性难愈合伤口、纤维化等疾病发展过程中的作用,并进一步讨论了MSCs在临床相关疾病治疗中的潜在应用价值及挑战,以期为间充质干细胞的临床应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号