首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of ribonuclease B at 2.5-A resolution   总被引:3,自引:0,他引:3  
The glycosylated form of bovine pancreatic ribonuclease, RNase B, was crystallized from polyethylene glycol 4000 at low ionic strength in space group C2 with unit cell dimensions of a = 101.81 A, b = 33.36 A, c = 73.60 A, and beta = 90.4 degrees. The crystals, which contained two independent molecules of RNase B as the asymmetric unit, were solved by a combination of multiple isomorphous replacement and molecular replacement approaches. The structures of the two molecules were refined to 2.5-A resolution and a conventional R factor of 0.22 using a constrained-restrained least squares procedure (CORELS). Complexes were also investigated of RNase B plus ruthenium pentaamine and between RNase B and a substrate analogue iodouridine. The polypeptide backbones of the two molecules of RNase B in the asymmetric unit were found to be statistically identical and their differences from RNase A to be statistically insignificant. The carbohydrate chains of both molecules extended into solvent cavities in the crystal lattice and appear to be disordered for the most part. The oligosaccharides appear to exert no influence on the structure of the protein. Iodouridine was observed to bind identically in the pyrimidine site of both RNase B molecules and in a way apparently the same as that previously observed for RNase A. Ruthenium pentaamine bound at histidine 105 of both RNase B molecules in the asymmetric unit, but at a number of secondary sites as well. An array of bound ions was observed by Fo-Fc difference Fourier syntheses. These ions were proximal to lysine and arginine residues at the surface of the proteins while a pair of strong ion binding sites were seen to fall exactly in the active site clefts of both RNase B molecules in the asymmetric unit.  相似文献   

2.
Molecular structure of an apolipoprotein determined at 2.5-A resolution   总被引:8,自引:0,他引:8  
The three-dimensional structure of an apolipoprotein isolated from the African migratory locust Locusta migratoria has been determined by X-ray analysis to a resolution of 2.5 A. The overall molecular architecture of this protein consists of five long alpha-helices connected by short loops. As predicted from amino acid sequence analyses, these helices are distinctly amphiphilic with the hydrophobic residues pointing in toward the interior of the protein and the hydrophilic side chains facing outward. The molecule falls into the general category of up-and-down alpha-helical bundles as previously observed, for example, in cytochrome c'. Although the structure shows the presence of five long amphiphilic alpha-helices, the alpha-helical moment and hydrophobicity of the entire molecule fall into the range found for normal globular proteins. Thus, in order for the amphiphilic helices to play a role in the binding of the protein to a lipid surface, there must be a structural reorganization of the protein which exposes the hydrophobic interior to the lipid surface. The three-dimensional motif of this apolipoprotein is compatible with a model in which the molecule binds to the lipid surface via a relatively nonpolar end and then spreads on the surface in such a way as to cause the hydrophobic side chains of the helices to come in contact with the lipid surface, the charged and polar residues to remain in contact with water, and the overall helical motif of the protein to be maintained.  相似文献   

3.
The molecular structure of cytoplasmic malate dehydrogenase from pig heart has been refined by alternating rounds of restrained least-squares methods and model readjustment on an interactive graphics system. The resulting structure contains 333 amino acids in each of the two subunits, 2 NAD molecules, 471 solvent molecules, and 2 large noncovalently bound molecules that are assumed to be sulfate ions. The crystallographic study was done on one entire dimer without symmetry restraints. Analysis of the relative position of the two subunits shows that the dimer does not obey exact 2-fold rotational symmetry; instead, the subunits are related by a 173 degrees rotation. The structure results in a R factor of 16.7% for diffraction data between 6.0 and 2.5 A, and the rms deviations from ideal bond lengths and angles are 0.017 A and 2.57 degrees, respectively. The bound coenzyme in addition to hydrophobic interactions makes numerous hydrogen bonds that either are directly between NAD and the enzyme or are with solvent molecules, some of which in turn are hydrogen bonded to the enzyme. The carboxamide group of NAD is hydrogen bonded to the side chain of Asn-130 and via a water molecule to the backbone nitrogens of Leu-157 and Asp-158 and to the carbonyl oxygen of Leu-154. Asn-130 is one of the corner residues in a beta-turn that contains the lone cis peptide bond in cytoplasmic malate dehydrogenase, situated between Asn-130 and Pro-131. The active site histidine, His-186, is hydrogen bonded from nitrogen ND1 to the carboxylate of Asp-158 and from its nitrogen NE2 to the sulfate ion bound in the putative substrate binding site. In addition to interacting with the active site histidine, this sulfate ion is also hydrogen bonded to the guanidinium group of Arg-161, to the carboxamide group of Asn-140, and to the hydroxyl group of Ser-241. It is speculated that the substrate, malate or oxaloacetate, is bound in the sulfate binding site with the substrate 1-carboxyl hydrogen bonded to the guanidinium group of Arg-161.  相似文献   

4.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant cytoplasmic protein which is synthesized in the small intestinal lining cell where it is thought to participate in the absorption and intracellular metabolism of fatty acids. Each mole of this 132-residue polypeptide binds 1 mol of long chain fatty acid in a noncovalent fashion. Because of its small size and single ligand-binding site, I-FABP represents an attractive model for defining the molecular details of long chain fatty acid-protein interactions. The structure of Escherichia coli-derived rat I-FABP has now been solved to 2.5 A resolution using three isomorphous heavy atom derivatives. The protein consists of 10 anti-parallel beta-strands present as two orthogonal beta-sheets. Together a "clam shell-like" structure is formed with an opening located between two beta-strands and an interior that is lined with the side chains of nonpolar amino acids. The bound fatty acid ligand is located in the interior of the protein and has a bent conformation, possibly reflecting the presence of several gauche bonds in the hydrocarbon tail. Our present interpretation of the electron density map suggests that the fatty acid is oriented with its carboxylate group facing the guanidinium group of Arg127, whereas the end of its hydrocarbon tail is in close proximity to Val106. The indole side chain of Trp83 forms the molecular framework around which the principal bend of the hydrocarbon chain occurs.  相似文献   

5.
The crystal structure of erabutoxin a at 2.0-A resolution   总被引:1,自引:0,他引:1  
The three-dimensional structure of erabutoxin a, a single-chain, 62-residue protein neurotoxin from snake venom, has been determined to 2.0-A resolution by x-ray crystal structure analysis. Molecular replacement methods were used, and the structure refined to a residual R = 0.17. The sites of 62 water molecules and 1 sulfate ion have been located and refined. The structure of erabutoxin a is very similar to that established earlier for erabutoxin b. These toxins from venom of the same snake differ in sequence only at residue 26, which is Asn in erabutoxin a and His in erabutoxin b. The substitution leads to only minor variations in intramolecular hydrogen bonding. Furthermore, the distribution of thermal parameters and the implied regional mobilities are similar in the two structures. In particular, the highly mobile character of the peripheral segment Pro44-Gly49 in both structures supports the specific role proposed for this segment in neurotoxin binding to the acetylcholine receptor. Forty-eight of the solvent sites determined are first surface positions; approximately one-half of these are equivalent to solvent sites in erabutoxin b.  相似文献   

6.
The structure of prothrombin fragment 1 at 3.5-A resolution   总被引:1,自引:0,他引:1  
The structure of prothrombin fragment 1 has been determined at 3.5-A resolution by multiple isomorphous replacement methods with four heavy atom derivatives. The final average figure of merit is 0.72. There is a large cylindrical solvent region with an average diameter of 35-40 A along the entire length of the c axis (85 A) centered at about x = y = 1/2. The connected density forming the wall of this channel is not of sufficient extent to account for the 156 residues of fragment 1 and the two accompanying carbohydrate chains totaling 5000 in molecular weight. Deglycosylated fragment 1 crystallizes isomorphously with fragment 1, and a difference map between the two revealed that the sugar chains are severely disordered and reside in the solvent channel. Although the disordered carbohydrate and the complexity of five disulfides in a 126-residue sequence have hampered the complete tracing of the peptide chain, two-thirds of the molecule has been accounted for in the form of an unusually oblate ellipsoid of about 15 X 30 X 35 A. The folding of the molecule has little secondary structure (one alpha-helix (7%), 20% beta-structure) in agreement with dichroism measurements and one of the points of carbohydrate attachment is suggested from the deglycosylated difference map.  相似文献   

7.
The crystal structure of pea lectin at 3.0-A resolution   总被引:7,自引:0,他引:7  
The structure of pea lectin has been determined to 3.0-A resolution based on multiple isomorphous replacement phasing to 6.0-A resolution and a combination of single isomorphous replacement, anomalous scattering, and density modification to 3.0-A resolution. The pea lectin model has been optimized by restrained least squares refinement against the data between 7.0- and 3.0-A resolution. The final model at 3.0 A gives an R factor of 0.24 and a root mean square deviation from ideal bond distances of 0.02 A. The two monomers in the asymmetric unit are related by noncrystallographic 2-fold symmetry to form a dimer. Monomers were treated independently in modeling and refinement, but are found to be virtually identical at this resolution. The molecular structure of the pea lectin monomer is very similar to that of concanavalin A, the lectin from the jack bean. Similarities extend from secondary and tertiary structures to the occurrence of a cis-peptide bond and the pattern of coordination of the Ca2+ and Mn2+ ions. Differences between the two lectin structures are confined primarily to the loop regions and to the chain termini, which are different and give rise to the unusual permuted relationship between the pea lectin and concanavalin A protein sequences.  相似文献   

8.
The molecular structure of a high potential iron-sulfur protein (HiPIP) isolated from the purple photosynthetic bacterium, Ectothiorhodospira halophila strain BN9626, has been solved by x-ray diffraction analysis to a nominal resolution of 2.5 A and refined to a crystallographic R value of 18.4% including all measured x-ray data from 30.0- to 2.5-A resolution. Crystals used in the investigation contained two molecules/asymmetric unit and belonged to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. An interpretable electron density map, obtained by combining x-ray data from one isomorphous heavy atom derivative with non-crystallographic symmetry averaging and solvent flattening, clearly showed that this high potential iron-sulfur protein contains 71 amino acid residues, rather than 70 as originally reported. As in other bacterial ferredoxins, the [4Fe-4S] cluster adopts a cubane-like conformation and is ligated to the protein via four cysteinyl sulfur ligands. The overall secondary structure of the E. halophila HiPIP is characterized by a series of Type I and Type II turns allowing the polypeptide chain to wrap around the [4Fe-4S] prosthetic group. The hydrogen bonding pattern around the cluster is nearly identical to that originally observed in the 85-amino acid residue Chromatium vinosum HiPIP and consequently, the 240 mV difference in redox potentials between these two proteins cannot be simply attributed to hydrogen bonding patterns alone.  相似文献   

9.
The crystal structure of Hg(II)-plastocyanin has been determined and refined at a resolution of 1.9 A. The crystals were prepared by soaking crystals of Cu(II)-plastocyanin from poplar leaves (Populus nigra var. italica) in a solution of a mercuric salt. Replacement of the Cu(II) atom in plastocyanin by Hg(II) causes only minor changes in the geometry of the metal site, and there are few significant changes elsewhere in the molecule. It is concluded that, as in the case of the native protein, the geometry of the metal site is determined by the polypeptide. The weak metal-S(methionine) bond found in Cu(II)-plastocyanin remains weak in Hg(II)-plastocyanin. The "flip" of a proline side chain close to the metal site from a C gamma-exo conformation in Cu(II)-plastocyanin to a C gamma-endo conformation in Hg(II)-plastocyanin suggests that this region of the molecule is particularly flexible. Crystallographic evidence for the close similarity of the Hg(II)- and Cu(II)-plastocyanin structures was originally obtained from electron density difference maps at 2.5-A resolution. The refinement of the structure was begun with a set of atomic coordinates taken from the structure of Cu(II)-plastocyanin. A Hg(II) atom was substituted for the Cu(II) atom, and the side chains of 6 residues in the vicinity of the metal site were omitted. Three series of stereochemically restrained least-squares refinement calculations were interspersed with two stages of model adjustment followed by phase extension. Fifty-nine water molecules were located. The final structure has a crystallographic residual R = 0.16.  相似文献   

10.
The three-dimensional crystal structure of the complex between the Fab from the monoclonal anti-lysozyme antibody D1.3 and the antigen, hen egg white lysozyme, has been refined by crystallographic techniques using x-ray intensity data to 2.5-A resolution. The antibody contacts the antigen with residues from all its complementarity determining regions. Antigen residues 18-27 and 117-125 form a discontinuous antigenic determinant making hydrogen bonds and van der Waals interactions with the antibody. Water molecules at or near the antigen-antibody interface mediate some contacts between antigen and antibody. The fine specificity of antibody D1.3, which does not bind (K alpha less than 10(5) M-1) avian lysozymes where Gln121 in the amino acid sequence is occupied by His, can be explained on the basis of the refined model.  相似文献   

11.
R Bott  E Subramanian  D R Davies 《Biochemistry》1982,21(26):6956-6962
An X-ray diffraction analysis has been carried out at 2.5-A resolution of the three-dimensional structure of the Rhizopus chinensis carboxyl proteinase complexed with pepstatin. The resulting model of the complex supports the hypothesis [Marciniszyn, J., Hartsuck, J.A., & Tang, J. (1976) J. Biol. Chem. 251, 7088-7094] that statine (3-hydroxy-4-amino-6-methylheptanoic acid) approaches an analogue of the transition state for catalysis. The way in which pepstatin binds to the enzyme can be extended to provide a model of substrate binding and a model of the transition-state complex. This in turn has led to a proposed mechanism of action based on general acid-base catalysis with no covalent intermediates. These predictions are in general agreement with kinetic studies using several carboxyl proteinases, which together with their sequence homology and their common three-dimensional structures suggest that this mechanism can be extrapolated to all carboxyl proteinases.  相似文献   

12.
The structure of glycogen phosphorylase alpha at 2.5 A resolution   总被引:10,自引:0,他引:10  
The structure of the glucose-inhibited form of glycogen phosphorylase a has been determined at a resolution of 2.5 Å. With the aid of the primary sequence derived by Titani et al. (1977) for this enzyme, we have constructed an atomic model of the 97,400 molecular weight monomer. A substantial improvement in the electron density map over that reported previously (Fletterick et al., 1976b) was achieved by extension of the data set to 2.5 Å and the inclusion of three additional “heavy-atom” derivatives in the phasing procedure. Main-chain and side-chain electron density are clearly resolved in the map, allowing an unambiguous correlation with the published primary structure. The course of the polypeptide backbone in the C-terminal half of the molecule has been modified at two positions from that reported in the 3.0 Å resolution interpretation.The enzyme is clearly organized into two domains, both with αβ packing topology. The catalytic site lies in a crevice at the interface between the two domains. α-d-Glucose, which stabilizes the inactive (T) conformation in the parent crystal, is bound at this site in the C(6′) chair equatorial conformation within 6 Å of the pyridoxal phosphate coenzyme which is covalently bound through the ?-amino group of lysine 679.The larger, N-terminal domain is differentiated by folding architecture and tertiary contacts into two lobes or subdomains which share the same β-sheet backbone: the predominantly helical glycogen storage (maltoheptaose binding) lobe and the N-terminal subdomain. The latter is involved in a variety of protein-protein interactions with the monomer related by the 2-fold axis of the physiological dimer, and contains the serine 14-phosphate moiety and the AMP (positive effector) binding site. The core of the second domain is the complex (βαβ)′ folding unit previously characterized as the nucleotide binding fold (Rao &; Rossmann, 1973).  相似文献   

13.
Molecular structure of serum transferrin at 3.3-A resolution   总被引:10,自引:0,他引:10  
Serum transferrin is a metal-binding glycoprotein, molecular weight ca. 80,000, whose primary function is the transport of iron in the plasma of vertebrates. The X-ray crystallographic structure of diferric rabbit serum transferrin has been determined to a resolution of 3.3 A. The molecule has a beta alpha structure of similar topology to human lactoferrin and is composed of two homologous lobes that each bind a single ferric ion. Each lobe is further divided into two dissimilar domains, and the iron-binding site is located within the interdomain cleft. The iron is bound by two tyrosines, a histidine, and an aspartic acid residue. The location of the 19 disulfide bridges is described, and their possible structural roles are discussed in relation to the transferrin family of proteins. Mapping of the intron/exon splice junctions onto the molecule provides some topological evidence in support of the putative secondary role for transferrin in stimulating cell proliferation.  相似文献   

14.
Platelet factor 4 (PF4), which is released by platelets during coagulation, binds very tightly to negatively charged oligosaccharides such as heparin. To date, six other proteins are known that are homologous in sequence with PF4 but have quite different functions. The structure of a tetramer of bovine PF4 complexed with one Ni(CN)4(2-) molecule has been determined at 3.0 A resolution and refined to an R factor of 0.28. The current model contains residues 24-85, no solvent, and one overall temperature factor. Residues 1-13, which carried an oligosaccharide chain, were removed with elastase to induce crystallization; residues 14-23 and presumably 86-88 are disordered in the electron density map. Because no heavy atom derivative was isomorphous with the native crystals, the complex of PF4 with one Ni(CN)4(2-) molecule was solved using a single, highly isomorphous Pt(CN)4(2-) derivative and the iterative, single isomorphous replacement method. The secondary structure of the PF4 subunit, from amino- to carboxyl-terminal end, consists of an extended loop, three strands of antiparallel beta-sheet arranged in a Greek key, and one alpha-helix. The tetramer contains two extended, six-stranded beta-sheets, each formed by two subunits, which are arranged back-to-back to form a "beta-bilayer" structure with two buried salt bridges sandwiched in the middle. The carboxyl-terminal alpha-helices, which contain lysine residues that are thought to be intimately involved in binding heparin, are arranged as antiparallel pairs on the surface of each extended beta-sheet.  相似文献   

15.
The structure of rat mast cell protease II at 1.9-A resolution   总被引:14,自引:0,他引:14  
The structure of rat mast cell protease II (RMCP II), a serine protease with chymotrypsin-like primary specificity, has been determined to a nominal resolution of 1.9 A by single isomorphous replacement, molecular replacement, and restrained crystallographic refinement to a final R-factor of 0.191. There are two independent molecules of RMCP II in the asymmetric unit of the crystal. The rms deviation from ideal bond lengths is 0.016 A and from ideal bond angles is 2.7 degrees. The overall structure of RMCP II is extremely similar to that of chymotrypsin, but the largest differences between the two structures are clustered around the active-site region in a manner which suggests that the unusual substrate specificity of RMCP II is due to these changes. Unlike chymotrypsin, RMCP II has a deep cleft around the active site. An insertion of three residues between residues 35 and 41 of chymotrypsin, combined with concerted changes in sequence and a deletion near residue 61, allows residues 35-41 of RMCP II to adopt a conformation not seen in any other serine protease. Additionally, the loss of the disulfide bridge between residues 191 and 220 of chymotrypsin leads to the formation of an additional substrate binding pocket that we propose to interact with the P3 side chain of bound substrate. RMCP II is a member of a homologous subclass of serine proteases that are expressed by mast cells, neutrophils, lymphocytes, and cytotoxic T-cells. Thus, the structure of RMCP II forms a basis for an explanation of the unusual properties of other members of this class.  相似文献   

16.
The structure of ribonuclease at 2.5 Ångström resolution   总被引:3,自引:0,他引:3  
The tertiary structure of ribonuclease-A crystallized from 40% aqueous ethanol has been determined by X-ray crystallography, using the method of isomorphous replacement with four heavy-metal derivatives. The unit cell of the crystal, with a = 30.31 A?, b = 38.26 A?, c = 52.91 A? and β = 105 °55′, contains two molecules and is similar to the form studied in detail by Harker, Kartha &; Bello at Buffalo, N.Y.The tertiary structures of the ribonucleases studied at the different centres are similar with regard to the α-carbon atom positions but the comparison cannot be extended further as no details of the Buffalo structure have been published.A preliminary comparison is made between the tertiary structures of RNase-A and that of RNase-S, whose atomic co-ordinates have been published. In both cases, the three amino acid residues, His-12, His-119 and Lys-41, responsible for activity have approximately the same relative positions with respect to one another, but there are some interesting differences between the two, which are pointed out in the text.  相似文献   

17.
The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution   总被引:4,自引:0,他引:4  
We report here the X-ray crystal structure of native subtilisin Carlsberg, solved at 2.5 A resolution by molecular replacement and refined by restrained least squares to a crystallographic residual (Formula see text): of 0.206. we compare this structure to the crystal structure of subtilisin BPN'. We find that, despite 82 amino acid substitutions and one deletion in subtilisin Carlsberg relative to subtilisin BPN', the structures of these enzymes are remarkably similar. We calculate an r.m.s. difference between equivalent alpha-carbon positions in subtilisin Carlsberg and subtilisin BPN' of only 0.55 A. This confirms previous reports of extensive structural homology between these two subtilisins based on X-ray crystal structures of the complex of eglin-c with subtilisin Carlsberg [McPhalen, C.A., Schnebli, H.P. and James, M.N.G. (1985) FEBS Lett., 188, 55; Bode, W., Papamokos, E. and Musil, D. (1987) Eur. J. Biochem., 166, 673-692]. In addition, we find that the native active sites of subtilisins Carlsberg and BPN' are virtually identical. While conservative substitutions at residues 217 and 156 may have subtle effects on the environments of substrate-binding sites S1' and S1 respectively, we find no obvious structural correlate for reports that subtilisins Carlsberg and BPN' differ in their recognition of model substrates. In particular, we find no evidence that the hydrophobic binding pocket S1 in subtilisin Carlsberg is 'deeper', 'narrower' or 'less polar' than the corresponding binding site in subtilisin BPN'.  相似文献   

18.
19.
The crystal structure of recombinant rabbit interferon-gamma was solved by the multiple isomorphous replacement technique at 2.7-A resolution and refined to a crystallographic R-factor of 26.2%. The interferon crystallizes with one-half of the functional dimer in the asymmetric unit, with the two polypeptide chains of the dimer related by a crystallographic 2-fold symmetry axis. The structure is predominantly alpha-helical with extensive interdigitation of the alpha-helical segments of the two polypeptide chains.  相似文献   

20.
X-ray crystal structure of D-xylose isomerase at 4-A resolution   总被引:10,自引:0,他引:10  
The structure of D-xylose isomerase from Streptomyces rubiginosus has been determined at 4-A resolution using multiple isomorphous phasing techniques. The folding of the polypeptide chain has been established and consists of two structural domains. The larger domain consists of eight beta-strand alpha-helix (beta alpha) units arranged in a configuration similar to that found for triose phosphate isomerase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and pyruvate kinase. The smaller domain forms a loop away from the larger domain but overlapping the larger domain of another subunit so that a tightly bound dimer is formed. The tetramer then consists of two such dimers. The location of the active site in the enzyme has been tentatively identified from studies using a crystal grown from a solution containing the inhibitor xylitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号