首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and inexpensive aqueous two-phase system for the affinity partitioning of proteins is introduced. An aqueous solution consisting of maltodextrin (M100; molecular mass, 1800) and polyvinylpyrrolidone (PVP360; molecular mass, 360,000) formed two phases at 4 degrees C when the concentration of the polymers was 22.5% (w/w) and 4.0% (w/w), respectively. When the amino derivatives of chlorotriazine textile dyes or other azo textile dyes were added to the two-phase system they partitioned asymmetrically, favoring the upper, less dense, PVP360-rich phase. The association of the textile dyes with PVP360 did not prevent them from acting as affinity ligands for proteins. Three of the dyes screened increased the partition coefficient of purified lysozyme nearly 50-fold over a control containing no dye. Parameters such as pH, ionic strength, and dye concentration modulated the affinity-partitioning effect of the system. The partition coefficient of lysozyme in an egg white protein mixture increased severalfold as the total protein content of the system approached 4% (w/w), indicating that protein concentration is also important in determining the partitioning characteristics of this two-phase system. Proteins were efficiently freed of PVP360 and textile dye by recovery in a high-salt solution when another two-phase system was formed upon the addition of a solution of concentrated potassium phosphate to the isolated upper phase of a PVP360/M100/textile dye two-phase system. The affinity-partitioning system presented here allows one to screen large numbers of potentially useful protein ligands to optimize protein separation, followed by direct scaleup to a system size determined by the user.  相似文献   

2.
A new method for the measurement of diffusion in thick samples is introduced, based upon the spatial Fourier analysis of Tsay and Jacobson (Biophys. J. 60: 360-368, 1991) for the video image analysis of fluorescence recovery after photobleaching (FRAP). In this approach, the diffusion coefficient is calculated from the decay of Fourier transform coefficients in successive fluorescence images. Previously, the application of FRAP in thick samples has been confounded by the optical effects of out-of-focus light and scattering and absorption by the sample. The theory of image formation is invoked to show that the decay rate is the same for both the observed fluorescence intensity and the true concentration distribution in the tissue. The method was tested in a series of macromolecular diffusion measurements in aqueous solution, in agarose gel, and in simulated tissue consisting of tumor cells (45% v/v) and blood cells (5% v/v) in an agarose gel. For a range of fluorescently labeled proteins (MW = 14 to 600 kD) and dextrans (MW = 4.4 to 147.8 kD), the diffusion coefficients in aqueous solution were comparable to previously published values. A comparison of the spatial Fourier analysis with a conventional direct photometric method revealed that even for the weakly scattering agarose sample, the conventional method gives a result that is inaccurate and dependent on sample thickness whereas the diffusion coefficient calculated by the spatial Fourier method agreed with published values and was independent of sample thickness. The diffusion coefficient of albumin in the simulated tissue samples, as determined by the spatial Fourier analysis, varied slightly with sample thickness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effective oxygen diffusion coefficients and solubilities were measured for submerged cultures of Saccharomyces cerevisiae, Escherichia coli, and Penicillium chrysogenum. Both effective oxygen diffusion coefficients and solubilities were found to decrease with increasing cell concentrations in the fermentation media. Comparison of the experimental results of effective oxygen diffusion coefficients in fermentation media with values theoretically predicted on the assumption of unpenetrable microbial cells indicates that oxygen molecules diffuse through the cells during the diffusion process. Within the cell concentration range of typical submerged fermentations, the effective oxygen diffusion coefficient of the fermentation media can be described as D(e) = A(1)f + A(2)f(2). In this equation, fis the cell volume fraction and both A(1) and A(2) are functions of the shape of the cells and the ratio of effective oxygen diffusion coefficient in microbial cells to that in the medium.  相似文献   

4.
We have determined the influences of polyvinylpyrrolidone (PVP) on the topical delivery of chlorin e6 (Ce6) in malignant bladder cells. The chick chorioallantoic membrane (CAM) was used to model the tumor spheroids that resemble small residual bladder tumors prior to vascularization. Macroscopic fluorescence imaging showed that Ce6‐PVP‐induced fluorescence had a higher sensitivity and specificity for delineating tumor from the adjacent normal CAM compared to Ce6 alone. Nonlinear regression analyses have shown that Ce6‐PVP has a longer half‐life in the tumor compared to Ce6. The uptake ratio of Ce6‐PVP was found to have a 2‐fold increase across the CAM when compared to that of Ce6, indicating that PVP was able to facilitate diffusion of Ce6 across the membrane. Confocal laser scanning microscopy further confirmed that Ce6‐PVP has better penetration in the CAM as well as in the tumor cells compared to Ce6. The present work contributes to our understanding of the Ce6‐PVP drug–polymer system by demonstrating for the first time that the presence of PVP facilitates the transport of Ce6 across the chorioallantoic membrane. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The patching and endocytosis of EGF (epidermal growth factor) bound to A-431 cells (a human epidermoid carcinoma line) are temperature-sensitive processes which are completely inhibited at 4 degrees C. Receptor-mediated endocytosis generally occurs through coated regions, and EGF bound to its membrane receptor must diffuse laterally to these points of internalization. In this work we investigated the thermal sensitivity of the lateral diffusion of EGF receptor complexes and the thermal sensitivity of the patching and endocytosis of the hormone receptor complexes. Using the fluorescence photobleach recovery technique, we measured the lateral diffusion coefficients of a fluorescent derivative of EGF as a function of temperature. The lateral diffusion coefficient (D) increased gradually from 2.8 X 10(-10) cm2/s at 5 degrees C to 8.5 X 10(-10) cm2/s at 37 degrees C, and no phase transition was detected. Neither was a phase transition detected when we measured the diffusion coefficient of fluorescent lipid probes over this temperature range. From a calculation of the collision frequency of the occupied EGF receptors with coated regions using our measured values of D at 5 and 37 degrees C, we conclude that diffusion is not the rate-limiting step for either endocytosis or patching.  相似文献   

6.
Surprisingly little is known about the physical environment inside a prokaryotic cell. Knowledge of the rates at which proteins and other cell components can diffuse is crucial for the understanding of a cell as a physical system. There have been numerous measurements of diffusion coefficients in eukaryotic cells by using fluorescence recovery after photobleaching (FRAP) and related techniques. Much less information is available about diffusion coefficients in prokaryotic cells, which differ from eukaryotic cells in a number of significant respects. We have used FRAP to observe the diffusion of green fluorescent protein (GFP) in cells of Escherichia coli elongated by growth in the presence of cephalexin. GFP was expressed in the cytoplasm, exported into the periplasm using the twin-arginine translocation (Tat) system, or fused to an integral plasma membrane protein (TatA). We show that TatA-GFP diffuses in the plasma membrane with a diffusion coefficient comparable to that of a typical eukaryotic membrane protein. A previous report showed a very low rate of protein diffusion in the E. coli periplasm. However, we measured a GFP diffusion coefficient only slightly smaller in the periplasm than that in the cytoplasm, showing that both cell compartments are relatively fluid environments.  相似文献   

7.
The role of ligand affinity in altering αPS2CβPS integrins’ lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22 % and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins’ increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75 % slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99 % for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.  相似文献   

8.
The osmotic permeability coefficient (Pf) was measured with a stopped- flow light-scattering technique. There is an artifactual light- scattering signal produced by the initial mixing that decays with a half-time of approximately 0.2 s. This seriously interferes with the measurement of the osmotically induced change in cell volume, which has a similar half-time. This "injection artifact" is associated with the biconcave shape of the cells. It is negligible for cells that have been made nearly spherical by swelling them in 160 mosmol. The dependence of this artifact on the cell volume may explain the previously observed dependence of Pf on the cell volume. When cells are made echinocytic (and therefore spherically symmetric), this injection artifact becomes negligible at all cell volumes and Pf can be accurately measured. The Pf of echinocytic cells was nearly constant, varying by less than 10% with the direction of flow and the medium osmolarity (160-360 mosmol). The average value of Pf was 2.0 X 10(-2) cm/s (T = 23 degrees C).  相似文献   

9.
The effectiveness of dextran fractions (Dx-500, Dx-100, Dx-70) and polyvinylpyrrolidone (PVP-360, PVP-40) in inducing aggregation of red blood cells (RBC) was studied in a nonflowing environment. The Dx fractions, at low concentrations, induced aggregation of human RBC but failed to do so at high concentrations (concentrations greater than 70 g/L). The effect was different on RBC from animal species (cat and rabbit); aggregation increased steadily with the Dx concentration and there was no critical concentration beyond which Dx failed to induce aggregation. The PVP was found to be very effective, at all concentrations, in inducing aggregation of RBC from both human and the animal species. These results have a twofold significance (1) they suggest that Dx and PVP, both neutral polymers, interact differently with the human RBC membrane; and (2) the association of Dx with the human RBC membrane is different from that with cat and rabbit RBC membranes.  相似文献   

10.
本文首次把ABC法应用于受体流动性测量中的膜表面受体荧光标记,利用FRAP(Fluorescence Recovery After Photobleaching)技术实现了细胞内吞过程中膜受体流动性变化的测量.实验用Con A—Biotin和Avidin—FITC(ABC法)标记巨噬细胞ConA受体,测量ConA刺激不同时间细胞膜表面受体的荧光强度、扩散系数和荧光恢复率的变化.结果显示ABC标记法适合于测量细胞内吞过程中膜表面受体的流动性变化,且具有较高的灵敏度高;巨噬细胞受ConA刺激后,膜表面ConA受体的扩散系数和荧光恢复率较静息状态时明显降低.  相似文献   

11.
We conjugated tumor necrosis factor-alpha (TNF-alpha) with the synthetic polymeric modifier polyvinyl pyrrolidone (PVP) to facilitate its clinical use for anti-tumor therapy. TNF-alpha was chemically conjugated with the terminal carboxyl-bearing PVP at one end of its main chain, which was radically polymerized via the formation of an amide bond between the lysine amino groups of TNF-alpha and carboxyl group of PVP. In vitro specific bioactivity of PVP-conjugated TNF-alpha (PVP-TNF-alpha) relative to that of native TNF-alpha gradually decreased with increases in the degree of PVP attachment. In contrast, PVP-TNF-alpha in which 40% of TNF-alpha lysine residues were coupled with PVP (MPVP-TNF-alpha) exhibited the highest anti-tumor activity among the conjugated derivatives examined. MPVP-TNF-alpha had more than 200-fold higher anti-tumor efficacy than native TNF-alpha, and the anti-tumor activity of MPVP- TNF-alpha was more than 5-fold stronger than that MPEG- TNF-alpha which had the highest anti-tumor activity among PEG-conjugated TNF-alphas examined. Additionally, a high dose of native TNF-alpha induced toxic side-effects such as body weight reduction, piloerection and tissue inflammation, while no side effects were observed following i.v. administration of MPVP-TNF-alpha. The plasma half-life of MPVP-TNF-alpha (360 min) was about 80 and 3-fold longer than those of native TNF-alpha (4.6 min) and MPEG-TNF-alpha (122 min), respectively. These results suggested that PVP is a useful polymeric modifier for increasing the anti-tumor activity of PVP.  相似文献   

12.
PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored.  相似文献   

13.
The mechanics by which normal human erythrocytes join on a plastic cover slip into two cell doublets and larger aggregates of rouleaux were studied microscopically. Polyvinylpyrrolidone (PVP-360) or dextran (DX-70 or DX-110) were used as the rouleau agents. The minimum concentration of the rouleau-inducing agents required to form doublets was 1 g/L for PVP-360 and 5 g/L for the DXs. Three modes of interaction were observed in Ringer's solution with PVP or DX, cresting and flipping (involving no intercellular sliding) and a sliding mode of doublet formation (involving less gravitational work and less cellular deformation). The sliding mechanism occurred in suspensions with the lower concentrations of the rouleau agent but was also observed when geometric constraints prevented the nonsliding interaction of larger groups of cells in the higher concentrations of the rouleau agent. The technique provides a sensitive index for studying the combined effect of cellular flexibility and intercellular adhesion. Significant changes were observed for reduced membrane surface charge or reduced ionic calcium.  相似文献   

14.
The temperature response of the uncoupled whole-chain electron transport rate (ETR) in thylakoid membranes differs depending on the growth temperature. However, the steps that limit whole-chain ETR are still unclear and the question of whether the temperature dependence of whole-chain ETR reflects that of the photosynthetic rate remains unresolved. Here, we determined the whole-chain, PSI and PSII ETR in thylakoid membranes isolated from spinach leaves grown at 30 degrees C [high temperature (HT)] and 15 degrees C [low temperature (LT)]. We measured temperature dependencies of the light-saturated photosynthetic rate at 360 microl l(-1) CO2 (A360) in HT and LT leaves. Both of the temperature dependences of whole-chain ETR and of A360 were different depending on the growth temperature. Whole-chain ETR was less than the rates of PSI ETR and PSII ETR in the broad temperature range, indicating that the process was limited by diffusion processes between the PSI and PSII. However, at high temperatures, whole-chain ETR appeared to be limited by not only the diffusion processes but also PSII ETR. The C3 photosynthesis model was used to evaluate the limitations of A360 by whole-chain ETR (Pr) and ribulose bisphosphate carboxylation (Pc). In HT leaves, A360 was co-limited by Pc and Pr at low temperatures, whereas at high temperatures, A360 was limited by Pc. On the other hand, in LT leaves, A360 was solely limited by Pc over the entire temperature range. The optimum temperature for A360 was determined by Pc in both HT and LT leaves. Thus, this study showed that, at low temperatures, the limiting step of A360 was different depending on the growth temperature, but was limited by Pc at high temperatures regardless of the growth temperatures.  相似文献   

15.
We have measured the lateral mobility of individual alpha5 integrin molecules in ventral plasma membranes of fibroblasts, which were prepared by removal of apical surfaces and nuclei followed by elimination of actin filaments with gelsolin, an actin-severing protein. The cytoplasmic domain of individual integrin molecules was tagged with 100 nm fluorescent polystyrene bead, and motion of the bead was observed and video-recorded. Position of the bead in each frame was determined from the centroid of the fluorescence image, from which plots of the mean-square displacement against time intervals were derived. Within short intervals of time (<100 ms) the mean-square displacement was proportional to the time interval, and the averaged translational diffusion coefficient of (5.3+/-4.4) x 10(-10) cm2/s was obtained with a broad distribution of (1.3-20) x 10(-10) cm2/s. The broad distribution might reflect the oligomerized state of integrin. The largest diffusion coefficient was comparable to that of lipid molecules previously measured in cells and probably represented the diffusion of a single integrin molecule in the presence of little interference of actin cytoskeleton or extracellular matrix. In longer time intervals (>100 ms) the motion of the bead was confined in an area, the average diameter of which was 410+/-160 nm. This was similar to the values described in previous reports, in which the motion of other membrane receptors labeled on their extracellular domain was measured in living cells.  相似文献   

16.
An increased response to PVP was observed after adult thymectomy and was partially reversed either by thymus implantation or by a single injection of thymic cells. In addition, an injection of thymic cells was found to reduce the response to PVP in normal recipients. An enhanced response to PVP was measured in B mice compared to that of normals. In such mice reduction of the response to PVP was observed when repeated doses of thymus cells were administered. Lower doses of HC resistant thymus cells strongly inhibited the response to PVP. The cells involved in the thymus regulatory function appear to be radiosensitive, since it was shown that radiation by itself resulted in an increased response to PVP. This inhibitory function of the thymus seems to disappear relatively early in progression of life, as seen by an increased response to PVP in elder mice. These results indicate that a T cell population exerts a regulatory function in the immunological response to PVP that was previously considered to be thymus independent.  相似文献   

17.
The interactions between the cytoplasmic protein diaphanous-1 (Diaph1) and the receptor for advanced glycation endproducts (RAGE) drive the negative consequences of RAGE signaling in several disease processes. Reported in this work is how Diaph1 affects the nanoscale clustering and diffusion of RAGE measured using super-resolution stochastic optical reconstruction microscopy (STORM) and single particle tracking (SPT). Altering the Diaph1 binding site has a different impact on RAGE diffusion compared to when Diaph1 expression is reduced in HEK293 cells. In cells with reduced Diaph1 expression (RAGE-Diaph1?/?), the average RAGE diffusion coefficient is increased by 35%. RAGE diffusion is known to be influenced by the dynamics of the actin cytoskeleton. Actin labeling shows that a reduced Diaph1 expression leads to cells with reduced filopodia density and length. In contrast, when two RAGE amino acids that interact with Diaph1 are mutated (RAGERQ/AA), the average RAGE diffusion coefficient is decreased by 16%. Since RAGE diffusion is slowed when the interaction between Diaph1 and RAGE is disrupted, the interaction of the two proteins results in faster RAGE diffusion. In both RAGERQ/AA and RAGE-Diaph1?/? cells the number and size of RAGE clusters are decreased compared to cells expressing RAGE and native concentrations of Diaph1. This work shows that Diaph1 has a role in affecting RAGE clusters and diffusion.  相似文献   

18.
A E Woolgar 《Cryobiology》1974,11(1):52-59
An investigation was made into the effects of the presence of polyvinylpyrrolidone (PVP) on changes in human red blood cells suspended in hypertonic solutions, on posthypertonic hemolysis, and on freezing at temperatures down to ?12 °C.PVP is very effective at reducing hemolysis when the red blood cells are frozen at temperatures down to ?12 °C. However, the membranes of the cells recovered on thawing have become very permeable to sodium and potassium ions and there is a much increased hemolysis if the cells are resuspended in an isotonic solution of sodium chloride.The presence of PVP does not affect the dehydration of the cells or the development of a change in membrane permeability when the cells are shrunken in hypertonic solutions at 0 °C. Neither does its presence in the hypertonic solution reduce the extent of posthypertonic hemolysis at 4 °C (as measured by the hemolysis on resuspension in an isotonic solution of sodium chloride), but it is more effective than sucrose at reducing hemolysis when present in the resuspension solution. It is concluded that the PVP is able to prevent swelling and hemolysis of cells which are very permeable to cations by opposing the colloid osmotic pressure due to the hemoglobin. However, this does not explain how PVP is able to protect cells against freezing damage at high cooling rates, and a mechanism by which it might do this is discussed.  相似文献   

19.
Intracellular diffusion of water   总被引:10,自引:0,他引:10  
Self-diffusion of cell water has been measured at diffusion times ranging from 0.3 ms to 1.0 s for human red cells, yeast, and brine shrimp using various pulsed gradient NMR methods. Intracellular diffusion coefficients and membrane permeabilities are calculated from these data with the aid of previous theoretical results for regularly spaced permeable planar barriers. The intracellular diffusion coefficients of water range from 1.2 X 10(-6) to 6 X 10(-6) cm2/s for the various samples. Outer-membrane permeabilities to water range from 0.0001 to 0.01 cm/s. The self-diffusion coefficient of lipid in a sample of human breast adipose tissue was found to be 1.5 X 10(-7) cm2/s.  相似文献   

20.
The apparent translational diffusion coefficients of four 20 base pair (bp) DNA oligonucleotides with different sequences have been measured by capillary electrophoresis, using the stopped migration method. The diffusion coefficients of the four oligomers were equal within experimental error, and averaged (120 +/- 10) x 10(-8) cm(2) s(-1) in 40 mM Tris-acetate-EDTA buffer at 25 degrees C. Since this value is nearly identical to the translational diffusion coefficient determined for a different 20-bp oligomer using other methods, the stopped migration method can accurately measure the diffusion coefficients of small DNA oligomers. The apparent diffusion coefficient of a 118-bp DNA restriction fragment was also measured by the stopped migration method. However, the observed value was approximately 25% larger than expected from other measurements, possibly because the diffusion coefficients of larger DNA molecules are somewhat dependent on the ionic strength of the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号