首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The uptake-storage properties and synthesis of noradrenaline, and fluorescence morphology of adrenergic nerves which have been allowed to regenerate for 4 weeks after a chemical sympathectomy produced by 6-hydroxydopamine have been investigated in mouse iris and atrium. The regenerated nerve terminals displayed a lower formaldehyde-induced fluorescence intensity whereas the non-terminal axons exhibited a stronger fluorescence intensity and a more beaded appearance compared with mature nerves. The endogenous noradrenaline concentration after 6-hydroxydopamine was 30% in iris and 45% in atrium compared to control values. Recovery of [3H]noradrenaline uptake was found to be more rapid than that of endogenous noradrenaline concentration after the 6-hydroxydopamine treatment. [3H]Noradrenaline uptake in regenerating and adult mature nerves both obeyed Michaelis-Menten kinetics having identical Km values. There was a close correlation between [3H]noradrenaline uptake and nerve density of adrenergic nerves regenerated after 6-hydroxydopamine. These results show that [3H]noradrenaline uptake is a better index for the number of regenerated nerve terminals than is the endogenous noradrenaline concentration. The retention of [3H]noradrenaline taken up and accumulated in vitro was about the same in regenerated and mature nerves, although a slight tendency to less effective retention was observed in the regenerated nerves. Subcellular distribution studies showed that relatively less [3H]noradrenaline was recovered in the microsomal fraction after 6-hydroxydopamine treatment. The formation of 14C-labelled catecholamines from [14C]DOPA was higher in regenerating nerves than indicated by the endogenous noradrenaline concentration but lower than that indicated by the [3H]noradrenaline. It is concluded that the regenerating nerves contain less endogenous noradrenaline than adult mature nerves and that the uptake mechanism develops promptly, whereas the development of the storage mechanism lags behind.  相似文献   

2.
Summary A population of nerve fibres in the gastro-intestinal tract of mice showing a high affinity for quinacrine was revealed by fluorescence microscopy. Similar results were obtained in rats and guinea pigs. Whole-mounts of sheets of the smooth muscle layer following incubation in 10-6-10-7 M quinacrine for 15–60 min revealed fine fluorescent varicose nerve fibers in the myenteric plexus of Auerbach both around nerve cell bodies and in the interconnecting strands. Many fibers were also present between the strands of the plexus, especially running parallel to the circular muscle layer. Such fibers were not seen in similarly quinacrine-incubated irides. A proportion of the cell bodies in Auerbach's plexus also showed quinacrine accumulation. These cells were apparently smaller neurons, sometimes with fluorescent processes. Intraperitoneal injections of quinacrine failed to demonstrate nerve fibers, but some cell bodies in Auerbach's plexus were positive. Subsequent paraformaldehyde treatment for monoamine visualization showed persistent adrenergic nerve terminals in the intestine and iris. These nerves seemed to be fewer and had a more yellow fluorescence than normally. The identity of the quinacrine-positive fibers is discussed with respect to recent suggestions that purinergic, substance P, enkephalin, and somatosin-containing nerves, in addition to adrenergic and cholinergic nerves, are present in the gut wall.Supported by the Swedish Medical Research Council (04X-03185). Magnus Bergvalls Stiftelse and Karolinska Institutets Fonder. For generous gifts of Mepacrine we thank Winthrop, Skärholmen, Stockholm, Sweden. The skilful technical assistance of Miss Gerd Boetius and Miss Maud Eriksson is gratefully acknowledged  相似文献   

3.
4.

Background

In prion disease, the peripheral expression of PrPC is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrPSc accumulation, localisation of nerve fibres and PrPC expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep.

Methodology/Principal Findings

Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrPC and PrPSc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrPSc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrPSc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrPSc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrPSc-laden germinal centres. However, the close association between nerves and PrPSc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres.

Conclusions/Significance

The findings suggest that the degree of PrPSc accumulation does not depend on the expression level of PrPC. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrPSc.  相似文献   

5.
1. The interaction between quinacrine mustard and mononucleotides and polynucleotides was investigated by fluorimetry and absorbance spectrophotometry. 2. The fluorescence spectrum of quinacrine mustard is independent of the ionic strength and pH. The dependence of the quinacrine mustard fluorescence intensity on ionic strength, pH and anions is described. 3. The fluorescence intensity of quinacrine mustard was enhanced with the mononucleotide adenylic acid and polynucleotides such as poly(rA), poly(rU) and poly(rA,rU). 4. Quenching of the fluorescence intensity of quinacrine mustard occurred with the mononucleotide guanylic acid and with poly(rG) and poly(rC,rG). 5. The mononucleotide cytidylic acid or poly(rC) showed no effect on the fluorescence intensity of quinacrine mustard. 6. The interaction between the dye and native DNA species was also dependent on the presence of base-specific binding sites in the DNA. The higher the (G+C) content was in the native DNA tested the higher was the quenching effect on the fluorescence intensity of quinacrine mustard. 7. No interaction was found between the dye and methylated DNA. The binding between quinacrine mustard and apurinic DNA was confirmed to be in the phosphate groups of the purines.  相似文献   

6.
The nervous system of Phocanema decipiens was examined with both the formaldeyhyde-induced and the glyoxylic acid fluorescence histochemical techniques. Green catecholaminergic structures were observed in 4 cephalic papillary nerves, 2 fibres with varicosities in the nerve ring as well as the ventral nerve cord and a pair of lateral nerves.The papillary nerves, extending from the nerve ring to the lips region, have cell bodies which are located anterior or adjacent to the nerve ring. Cell bodies of the lateral nerves are found within the lateral cord tissue posterior to the nerve ring. Each of these neurons has 3 processes—one joins with the nerve ring, the other merges with the ventral nerve cord and the third ends abruptly within the lateral cord.  相似文献   

7.
Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue.  相似文献   

8.
M. Masson 《Polar Biology》1989,10(2):101-106
Summary Antarctic biomass acoustic surveys generally yield biomass estimations expressed in terms of krill biomass, on basis of its being the major component of the Antarctic ecosystem. The influence of other scatterers is often left aside, thus introducing a bias in the estimations. The correlation between krill density distribution, as assessed by trawls, and Mean Volume Backscattering Strength frequency distribution in the range (-80, -60) dB(m–1·sr–1), allows to propose a method to reduce the bias. This method could be used to study the influence of each kind of scatterers on the recorded acoustic values, thus leading to better estimations.  相似文献   

9.
The fluorescence and circular dichroism of quinacrine complexed with nucleic acids and chromatin were measured to estimate the relative magnitudes of factors influencing the fluorescence banding patterns of chromosomes stained with quinacrine or quinacrine mustard. DNA base composition can influence quinacrine fluorescence in at least two ways. The major effect, evident at low ratios of quinacrine to DNA, is a quenching of dye fluorescence, correlating with G-C composition. This may occur largely prior to relaxation of excited dye molecules. At higher dye/DNA saturations, which might exist in cytological chromosome preparations stained with high concentrations of quinacrine, energy transfer between dye molecules converts dyes bound near G-C base pairs into energy sinks. In contrast to its influence on quinacrine fluorescence, DNA base composition has very little effect on either quinacrine binding affinity or the circular dichroism of bound quinacrine molecules. The synthetic polynucleotides poly(dA-dT) and poly(dA)-poly(dT) have a similar effect on quinacrine fluorescence, but differ markedly in their affinity for quinacrine and in the circular dichroism changes associated with quinacrine binding. Quinacrine fluorescence intensity and lifetime are slightly less when bound to calf thymus chromatin than when bound to calf thymus DNA, and minor differences in circular dichroism between these complexes are observed. Chromosomal proteins probably affect the fluorescence of chromosomes stained with quinacrine, although this effect appears to be much less than that due to variations in DNA base composition. The fluorescence of cytological chromosome preparations may also be influenced by fixation effects and macroscopic variations in chromosome coiling.  相似文献   

10.
When rat sciatic nerves were incubated with C14l-lysine, l- or d-glutamate, or d-l γ-aminoisobutyrate, the labeled compounds penetrated the nerve, and the level of lysine and leucine after 1 hr was higher in the nerve than in the medium. The level increased with time, and at 24 hr glutamate levels also were higher in the nerve than in the medium. Lowering the temperature strongly inhibited uptake, while other conditions such as absence of glucose, absence of sodium, or the presence of cyanide inhibited uptake by nerve less than uptake by brain slices. The uptake against a concentration gradient, and inhibitions of this uptake by metabolic inhibitors and by structural analogs, were interpreted as showing the presence of transport processes for amino acids in peripheral nerves with characteristics similar to such transport processes in the central nervous system.  相似文献   

11.
—(1) Sciatic nerves of young rats have been shown to incorporate [14C]glycine in vitro into the protein fraction at a higher rate than nerves from adult rats under the same conditions. (2) Whilst there is little change in the DNA content of the sciatic nerve of rats with age, there is a is noticeable decline in the RNA content with age. (3) There a linear relationship between the specific activity of the protein fraction and the RNA content of the sciatic nerve under in vitro conditions. (4) There is a decline in the specific activity of the protein fraction with age when expressed against DNA. (5) A linear relationship exists between the logarithm of the specific activity and the length of the femur.  相似文献   

12.
Summary The sympathetic innervation of the urinary tract of young adult (4 months) and aged (24+ months) rats has been examined by glyoxylic acid-induced fluorescence for the detection of noradrenaline and by immunofluorescence using antisera against tyrosine hydroxylase (TH) and neuropeptide Y (NPY). Immunostaining for calcitonin gene-related peptide (CGRP), known to be present in pelvic sensory nerves, was also performed. Semi-quantitative estimations of nerve densities were made of noradrenergic and peptidergic fibres innervating the smooth musculature of the ureter, bladder and urethra, and of the urinary tract vasculature. In the aged rats the overall patterns of innervation remained unchanged. However, with the exception of the vesical vasculature, the density of noradrenergic innervation decreased as did the intensity of histofluorescence. A similar pattern of results was observed by TH and NPY immunofluorescence. The results present evidence for a diminution in the sympathetic control of the urinary tract in aged rats. The pattern and density of CGRP-immunoreactive nerves was unchanged in the aged animals suggesting that pelvic visceral sensory innervation is more resistant to the effects of advancing age.  相似文献   

13.
Molecular basis of chromosome banding   总被引:1,自引:0,他引:1  
The effects of mouse satellite, main band and total DNA on the fluorescence intensity of quinacrine and of the bibenzimidazole derivative Hoechst 33258 were tested in solution. No significant differences were noticed between the double-stranded DNAs in spite of the 5% difference in AT-content between satellite and main band DNA. Single-stranded DNAs enhanced the fluorescence intensity of Hoechst 33258 far less than double-stranded DNAs. Having been denaturated and then reassociated the DNA fractions were intermediate in their enhancing effects on the fluorescence intensity of Hoechst 33258, the differences presumably being due to different degrees of reassociation. The effect of denatured and subsequently reassociated satellite DNA on the fluorescence intensity of quinacrine was similar to that of the native DNAs. Main band and total DNA quenched the fluorescence intensity of quinacrine more after denaturation-reassociation than it did when native. In the discussion the results are related to known cytological data.  相似文献   

14.
Summary The number of quinacrine-fluorescent nerve cell bodies and the percentage of the ganglion area occupied by this fluorescence within stretch preparations of the myenteric plexus of the stomach and ileum of the guineapig, rabbit and rat were assessed. The number of quinacrine-positive cell bodies per cm2 of plexus varied between 1045 in the rabbit ileum to 2633 in the rat stomach, whilst the percentage of the ganglionic area occupied by fluorescence was approximately 10 %. The distribution of quinacrine-fluorescent nerve fibres and cell bodies in the myenteric plexus was compared to the distribution of nerves revealed by catecholamine fluorescence and by staining for acetylcholinesterase in the stomach and ileum of all three species. Quinacrine fluorescence appears to be selective for non-adrenergic, non-cholinergic nerves; the possibility that it binds to high levels of ATP is discussed.  相似文献   

15.
Endogenous protein was lost from the olfactory nerve of the garfish (Lepisosteus osseus) when the excised but excitable nerve was bathed with normal physiological solution. The protein could be detected by its fluorescence at 340 nm when excited at 280 nm. The relative concentrations were expressed in terms of an equivalent fluorescence from a standard solution of tryptophan. From an initial fluorescence, equivalent to 5 × 10?10 mol of tryptophan/mg of nerve washed out during each 10 min, the efflux may decline slowly in rate to 10?11 mol/mg per 10 min. Depolarizing direct current or a several-fold increase of the concentration of KCl in the bathing solution might transiently double the rate of efflux above the resting rate during continuous monitoring of the fluorescence intensity. Changes in concentrations of external KCl, glucose or sucrose, in ionic strength (at constant osmolality), or in osmolality all produced a transient increase of fluorescence in the effluent from the nerve. An increase followed both introduction of the experimental solution and the return to the control solution. We interpreted the increase in intensity of fluorescence of the washout solution to indicate an increase in concentration of an intrinsic specific protein washed from the nerve. By electrophoresis, a single acidic fluorescent protein band was observed travelling with the marking dye. Chromatographic fractionation on Sephadex suggested a mol. wt. in excess of 100,000.  相似文献   

16.
Quinacrine, like a typical local anaesthetic, blocks the response of Electrophorus electricus electroplaque in vivo in a non-competitive manner and enhances, in vitro, the affinity of the cholinergic receptor present in Torpedo marmorata membrane fragments for acetylcholine. The interaction of quinacrine with T. marmorata membrane fragments can be followed by differential fluorescence spectroscopy either upon direct illumination (λEx = 350 nm) or by energy transfer from membrane proteins (λEx = 290 nm). Carbamylcholine and most of the cholinergic ligands tested cause an increase of the light intensity emitted by membrane-bound quinacrine under conditions of direct excitation; all these effects are blocked by a preincubation of the membrane fragments with the α-toxin from Naja nigricollis. When quinacrine is excited by energy transfer, carbamylcholine, phenyltrimethylammonium and hexamethonium cause an increase of fluorescence but flaxedil, tetraethylammonium and the α-toxin give a much smaller fluorescence increase or none.Local anaesthetics like prilocaine or quotane cause a decrease of fluorescence intensity of membrane-bound quinacrine in both the presence and absence of carbamylcholine. Quantitative studies on quinacrine binding and fluorescence as a function of quinacrine concentration reveal at least two populations (saturable and non-saturable) of binding sites, the saturable one being identical or closely related to the specific site of action of local anaesthetics. It is concluded that binding of cholinergic ligands primarily increases the quantum yield of a fraction of bound quinacrine.The curves of variation of fluorescence intensity with agonist and antagonist concentrations determined under conditions of direct illumination, closely resemble the binding curves determined at equilibrium with radioactive ligands. Under these conditions quinacrine therefore enables us to determine the occupancy of the receptor site by cholinergic ligands. On the other hand, the change of quinacrine fluorescence observed by energy transfer, which takes place with some of the cholinergic ligands but not with others, and does not correlate with any variation of the intrinsic fluorescence of membrane proteins, most likely reflects a change of structure bearing a qualitative relationship to the pharmacological activity of the tested ligands.  相似文献   

17.
A series of biochemical investigations were undertaken to determine the mechanism of Q-banding. The results were as follows: 1. In agreement with previous studies, highly AT-rich DNA, such as poly(dA)-poly(dT), markedly enhanced quinacrine fluorescence while GC containing DNA quenched fluorescence. These effects persisted at DNA concentrations comparable to those in the metaphase chromosome. 2. Studies of quinacrine-DNA complexes in regard to the hypochromism of quinacrine, DNA Tm, DNA viscosity, and equilibrium dialysis, indicated the quinacrine was bound by intercalation with relatively little side binding. 3. Single or double stranded nucleotide polymers, in the form of complete or partial helices, were 1000-fold more effective in quenching than solutions of single nucleotides, suggesting that base stacking is required for quenching. 4. Studies of polymers in the A conformation, such as transfer RNA and DNA-RNA hybrids, indicated that marked base tilting does not affect the ability of nucleic acids to cause quenching or enhancement of quinacrine fluorescence. 5. Salts inhibit the binding of quinacrine to DNA. 6. Spermine, polylysine and polyarginine, which bind in the small groove of DNA, inhibited quinacrine binding and quenching, while histones, which probably bind in the large groove, had little effect. This correlated with the observation that removal of histones with acid has no effect on Q-banding. 7. Mouse liver chromatin was separated into five fractions. At concentrations of quinacrine from 2×10?6 to 2×10?5 M all fractions inhibited to varying degrees the ability of the chromatin DNA to bind quinacrine and quench quinacrine fluorescence. At saturating levels of quinacrine two fractions, the 400 g pellet (rich in heterochromatin) and a dispersed euchromatin supernatant fraction, showed a decreased number of binding sites for quinacrine. These two fractions were also the richest in non-histone proteins. 8. DNA isolated from the different fractions all showed identical quenching of quinacrine fluorescence. 9. Mouse GC-rich, mid-band, AT-rich, and satellite DNA, isolated by CsCl and Cs2SO4-Ag+ centrifugation all showed identical quenching of quinacrine fluorescence, indicating that within a given organism, except for very AT or GC-rich satellites, the variation in base composition is not adequate to explain Q-banding. — We interpret these results to indicate that: (a) quinacrine binds to chromatin by intercalation of the three planar rings with the large group at position 9 lying in the small groove of DNA, (b) most pale staining regions are due to a decrease binding of quinacrine, and (c) this inhibition of binding is predominately due to non-histone proteins.  相似文献   

18.
Abstract— The S-100 and 14-3-2 proteins, which are found only in nervous tissues, were measured in degenerating rabbit optic nerve at 0, 5 10, 20, 40, 60, 80, 100, 150 and 200 days after unilateral enucleation in order to obtain indications of the cellular localization of these proteins in the central nervous system. S-100 increased and 14-3-2 decreased (both approximately 70 per cent) in cut nerves by 200 days of degeneration. Changes in amounts of the proteins were related to cellular alterations which characterize the degenerative process, as demonstrated by electron microscopy. In uncut nerves (intact eye) from these experimental animals, S-100 increased and 14-3-2 decreased slightly at 5 days, after which time the levels of each returned to those approximating the content in corresponding nerves from unoperated control animals. No appreciable change in total soluble proteins was measured in degenerating or intact nerves. Since S-100 increased and 14-3-2 decreased in the degenerating optic nerve as it became relatively enriched in glial constituents but impoverished in axonal content, it is suggested that S-100 is primarily a glial protein and 14-3-2 predominantly a neuronal protein in the central nervous system.  相似文献   

19.
Summary Histochemically demonstrable cholinesterases of rat skin and cutaneous nerves hydrolyze acetylthiocholine iodide and butyrylthiocholine iodide. Cholinesterase activity of the skin was located in the epidermis, in the hair follicles at the level of the sebaceous glands, in adjacent parts of the sebaceous glands, in erector pili muscles and their nerves, in cutaneous and subcutaneous nerves and nerve trunks, including some nerves accompanying cutaneous blood vessels, and in the membranes of fat cells. No encapsulated nerve endings were found. In the nerves of erector pili muscles there was some neurilemmal non-specific cholinesterase activity, demonstrated in the presence of 10–5 M BW 284C 51, and specific acetylcholinesterase activity resistant to 10–5 M iso-OMPA. The cholinesterase activity in other cutaneous nerves was inhibited by 10–5 M iso-OMPA but was resistant to 10–5 M BW284 C 51, thus representing mainly non-specifc cholinesterase (nsChE) activity.The adrenergic nerves of the dorsal skin, as revealed by glyoxylic acid-induced fluorescence (GIF), were located in association with erector pili muscles and surrounded arteries and arterioles. Small fluorescent nerves were situated in subcutaneous nsChE-positive nerve trunks.Using GIF and cholinesterase techniques performed either simultaneously or consecutively, it was found that the nsChE-positive, probably sensory, nerves accompanying blood vessels were fewer in number than the fluorescent adrenergic nerves and ran a course independent of them. No cholinesterase reaction was seen in the fluorescent adrenergic nerves when short incubation times were used. When the incubation time was prolonged overnight, the nsChE reaction closely followed the course of fluorescent adrenergic nerves.  相似文献   

20.
The affinity of quinacrine for native DNA has been determined from fluorescence measurements and equilibrium dialysis in Tris-HC10.05 m, NaCl0.1 m, EDTA 10?3m, pH 7.5. When considering M. lysodeiktikus, E. coli calf thymus and C. perfringens the affinities of DNA for quaniactive have been found to change by a factor of two and the fluorescence intensities to change by a factor of 25. The varying affinities and fluoroescence intensities of bound quinacrine are attributed to heterogeneous binding. For all DNAs we have assumed that there exist three classes of intercalation sites: I, A·T-A·T; 2, G·C-G·C; and 3, A·T-G·C, assuming that base pair ordering is less relevant than base composition of sites. By fitting the affinities of native DNAs with this model it was found that quinacrine binds to site 2 three times more strongly than it does to site 1. When flucrescence intensity is studied, triplets of A·T pairs appear to be responsible for the high quantum yield of A·T rich DNA whereas the quenching properties of a G·C base pair adjacent to an intercalated quinacrine are well known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号