首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cornejo  M. J.  Platt-aloia  K. A.  Thomson  W. W.  Jones  R. L. 《Protoplasma》1988,146(2-3):157-165
Summary Freeze-fracture electron microscopy was used to study changes in the endomembrane system of barley (Hordeum vulgare L. cv. Himalaya) aleurone protoplasts. Protoplasts were used for this study because their response to calcium and the plant hormone gibberellic acid (Ga3) can be monitored prior to rapid freezing of cells for electron microscopy. Protoplasts incubated in Ga3 plus Ca2+ secrete elevated levels of a-amylase relative to cells incubated in Ga3 or Ca2+ alone. The endoplasmic reticulum (ER) and Golgi apparatus of protoplasts incubated in Ga3 plus Ca2+ undergo changes that are well correlated with the synthesis and secretion of a-amylase. The ER, which appears as short, single sheets of membrane in Ca2+-and Ga3-treated protoplasts, exists as a series of long fenestrated stacks of membranes following incubation in Ga3 plus Ca2+. The Golgi apparatus is also more highly developed in protoplasts treated with Ga3 plus Ca2+. This organelle is larger and has more vesicles associated with its periphery in protoplasts that actively secrete a-amylase. Evidence that the Golgi apparatus participates in a-amylase secretion is also provided by experiments with the ionophore monensin, which causes pronounced swelling of Golgi cisternae and inhibits the secretion of a-amylase. We interpret these observations as showing that the ER and Golgi apparatus of barley aleurone participate in the intracellular transport and secretion of a-amylase. The plasmalemma (PF face) of barley aleurone protoplasts shows a high density of intramembranous particles (IMPs) which, in general, are evenly distributed. Occasionally, ordered arrays of IMPs are observed, possibly resulting fro m osmotic stress. after 48 hours the plasmalemma of some Ga3-treated protoplasts show particle-free areas considered to be indications of senescence.abbreviations ER endoplasmic reticulum - Ga3 gibberellic acid - IEF isoelectric focusing - IMP intramembranous particle - PF protoplasmic fracture - PL plasmalemma  相似文献   

2.
Protoplasts ofMarchantia polymorpha L. were isolated from suspension cells. Regeneration of cell walls on the surface of the protoplasts began within a few hr of cultivation. New cell walls completely covered the surface of the protoplasts within 48 hr. Coumarin and 2,6-dichlorobenzonitrile treatment inhibited the formation of the new cell wall. In the initial stage of cell wall regeneration, endoplasmic reticula developed remarkably close to the plasma membrane in the protoplasts, but no development of Golgi bodies was observed at the same locus. This may suggest that the Golgi bodies do not play an active role in the cell wall formation, at least not in very early periods of cell wall regeneration. The development of endoplasmic reticula and an ultrastructural change of plasma membrane from smooth to rough may be important in the cell wall formation of protoplasts.  相似文献   

3.
Summary Adequate ultrastructural preservation of cells of the green algaTrebouxia aggregata is achieved by immersion freeze fixation using liquid propane followed by freeze substitution and resin embedding at ambient temperature. Despite differential staining of membranes, using this method we have been able to study plasma membrane biogenesis during cellular division. Daughter protoplasts are separated by an ingrowing septum of plasma membrane that extends into the cell from a particular site at the peripheral plasma membrane marked by centrioles. Septum development involves tip growth followed by lateral growth. This growth seems to involve transfer of membrane from an adjacent partially coated reticulum to the septum plasma membrane. The reticulum which extends from nearby Golgi stacks to the area of septum growth is associated with an extensive array of microtubules. After daughter protoplasts are completely separated, each one becomes surrounded by a cell wall which is distinct from the persisting mother wall. The ultrastructural evidence suggests that cells ofT. aggregata are autospores rather than vegetative cells.Abbreviations C centriole - ER endoplasmic reticulum - G Golgi body - MTOC microtubule organizing center - Mt(s) microtubule(s) - N nucleus - P primary septum - PCR partially coated reticulum - PM plasma membrane - Py pyrenoid - S septum  相似文献   

4.
The prasinophyte genera Scherffelia and Tetraselmis are the only genera that form a cell wall by an extracellular fusion of scales called a theca. We established a protocol for the production of protoplasts from Scherffelia dubia Pascher emend. Melkonian et Preisig using 3 mM Ellman's reagent (5,5′‐dithio‐bis‐2‐nitrobenozoic acid [DTNB]). Protoplasts analyzed by EM lacked flagella and thecae but were otherwise similar to control cells. In response to treatment with DTNB, many protoplasts synthesized new thecal scales in the Golgi apparatus, indicating that cells attempted to regenerate new cell walls. However, complete regeneration of the thecae only occurred once DTNB was washed out from the medium. At higher DTNB concentrations (5 mM), two protoplasts were found within the parental cell wall and scales accumulated between the plasma membrane of the protoplasts and the original theca but failed to form a new theca.  相似文献   

5.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   

6.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

7.
G. Kakefuda  S. H. Duke  M. S. Hostak 《Planta》1986,167(2):175-182
The organelles of soybean (Glycine max (L.) Merr.) protoplasts were separated using a recently developed procedure which allows rapid (3-h) recovery of a fraction enriched for coated vesicles (CVs). As determined by marker-enzyme enrichment and ultrastructural analysis of isolated membrane fractions, endoplasmic reticulum, Golgi membranes, glucan-synthase-II (EC 2.4.1.34)-containing membranes (putative plasma membrane), mitochondria, and CVs were enriched in separate fractions in a sucrose density gradient. Glucan synthase I (EC 2.4.1.12) had the highest specific activity in the Golgi-enriched and CV-enriched fractions and was found to comigrate with CVs upon rate-zonal centrifugation of a CV-enriched fraction. For further elucidation of the role of these latter organelles in cell-wall regeneration, freshly isolated protoplasts were pulsed with [3H]glucose for 20 min, and the disappearance of label from the organelles was followed for the ensuing 1 h. Although a CV-enriched fraction contained glucan synthase I, it contained very small amounts of labelled polysaccharide during the period of study. Pulse-chase experiments with [3H]glucose helped to confirm the role of the Golgi apparatus in secretion of matrix polysaccharides by protoplasts.Abbreviations CV(s) coated vesicle(s) - Da dalton - ER endoplasmic reticulum - GSI,II glucan synthase I and II, respecitively Two whom correspondence should be directed. Address after February 1986:Department of Biology, Texas A&M University. College Station, TX 77843-3258, USA  相似文献   

8.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

9.
Protoplasts were prepared from cultured cells of Ammi visnaga (Umbelliferae) by enzymatic digestion of the cell walls and examined microscopically. Staining of fresh protoplasts with Calcofluor and silver hexamine demonstrated the apparent absence of wall material. Protoplasts contained more cell organelles than the whole cells, particularly endoplasmic reticulum and associated polysomes. The plasmalemma of most protoplasts appeared smooth; some protoplasts were connected by structures resembling plasmodesmata. Multinucleates resulting from fusion were frequently observed.  相似文献   

10.
Summary The ultrastructural localization of peroxidase in soybean (Glycine max L.) suspension culture cells and protoplasts is reported. In cells peroxidase is found primarily in the cell wall and at the tonoplast. Protoplasts and cells contain a vacuolar system which is differentiated with respect to peroxidase content since some vacuoles are found which do not contain peroxidase reaction product. The Golgi dictyosomes, coated and smooth vesicles contain peroxidase. Some of the multivesicular bodies have the reaction product as well. The results are discussed in terms of the pathways of sorting of peroxidase between the cell wall and vacuoles of cultured cells.  相似文献   

11.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

12.
Summary Wild carrot (Daucus carota L.) cells, grown in suspension culture, were labeled with radioactive precursors and fractionated into constituent membranes to be analyzed for specific radioactivity. Results show rapid incorporation of [3H] leucine into endoplasmic reticulum (ER)-, Golgi apparatus-, and plasma membrane/tonoplast-enriched fractions. The time lag between incorporation into ER and its appearance in Golgi apparatus or plasma membrane/tonoplast were less than 5 minutes. With an average time of 3–4 minutes for cisternal formation estimated from studies with monensin, and an average of 5 cisternae per dictyosome (total transit time of 15–20 minutes), it was not possible to account for early incorporation of radioactivity into plasma membranes by passage of proteins from ER to plasma membrane via the Golgi apparatus. To account for the findings, it would appear that at least some proteins were delivered to the plasma membrane via the first membranes that exited (i.e., mature face vesicles) from the Golgi apparatus post-pulse and that some of these proteins had been translated and inserted into membranes at or near the mature face of the Golgi apparatus.  相似文献   

13.
C. Grief  P. J. Shaw 《Planta》1987,171(3):302-312
A series of monoclonal antibodies and a polyclonal antiserum have been used to investigate the localisation and pathway of biosynthesis of the cell-wall hydroxyproline-rich glycoprotein 2BII in the alga Chlamydomonas reinhardii. Glyco-protein precursors were detected within the endoplasmic reticulum using a polyclonal antiserum raised to the deglycosylated 2BII. Monoclonal antibodies which are known to recognise different carbohydrate epitopes of 2BII were found to label two distinct regions of the Golgi stack. The immunolabelling results demonstrate that there is compartmentation of protein synthesis and glycosylation steps for these O-glycosidically linked glycoproteins. Newly synthesised glycoproteins are transported from the Golgi apparatus to the cell surface via two distinct routes. They then undergo assembly into a cell wall, the inner wall layer being formed first and probably functionaing as a template within which the outer crystalline wall layers are assembled.Abbreviations DGP deglycosylated glycoprotein - ER endoplasmic reticulum - MAC monoclonal antibody centre - M r relative molecular mass  相似文献   

14.
Summary Membranes from etiolated maize seedlings were isolated using sucrose gradients for in vitro studies of polysaccharide synthesis. Following downward centrifugation, flotation centrifugation improved the purity of membrane fractions, in particular the Golgi apparatus. Based on naphthylphthalamic acid binding to plasma membrane and inosine-5-diphosphatase activity in Golgi apparatus, flotation centrifugation removed about 70% of the plasma membrane which cosedimented with the Golgi apparatus in downward centrifugation. The addition of chelators during flotation centrifugation allowed separation of the Golgi apparatus from endoplasmic reticulum, as indicated by NADH cytochromec reductase activity. Glucan and xylan synthase activities were measured as the radioactivity incorporated from either UDP-14C-glucose or UDP-14C-xylose into 80% ethanol insoluble materials. Glucan synthase activity at a substrate concentration of 1 mM UDP-glucose without CaCl2 was greatest in fractions enriched in Golgi apparatus, but in the presence of 3 mM CaCl2 the activity was greatest in fractions enriched in plasma membrane. Glucan synthase activity at a substrate concentration of 10M UDP-glucose in the presence of 3 mM MnCl2 was greatest in fractions enriched in plasma membrane, but was also high in fractions enriched in Golgi apparatus. Xylan synthase activity, at a substrate concentration of 1 M UDP-xylose in the presence of 3 mM MnCl2, was greatest in fractions enriched in Golgi apparatus. To further characterize these synthase reactions, the glycosyl linkages of the products formed were analyzed with a gas chromatograph coupled to a radiogas proportional counter. With the substrate, UDP-14C-glucose, and fractions enriched in Golgi apparatus, both (13)- and (14)-radioactive glucosyl linkages were formed, whereas the main linkage formed by fractions enriched in plasma membrane was (13)-glucosyl. With the substrate, UDP-14C-xylose, mostly (14)-xylosyl and some terminal-xylosyl linkages were formed by fractions enriched in Golgi apparatus. Only xylan synthase activity copurified with Golgi apparatus and, because plasma membrane lacked this activity, xylan synthase may be used as a reasonable indicator of Golgi apparatus.Abbreviations ATP adenosine-5-triphosphate - CR crude fraction from downward centrifugation - FL purified fraction from flotation centrifugation - GC gas chromatography - GC-RPC gas chromatography-radiogas proportional counting - IDP inosine-5-disphosphate - NPA naphthylphthalamic acid - UDP uridine-5-diphosphate - TEM transmission electron microscopy  相似文献   

15.
Protoplasts of Pyricularia oryzae P2, a rice blast mold, were prepared in high yield from the young mycelium of the fungus using lytic enzymes from Bacillus circulans WL 12. The majority of the protoplasts had one nucleus per cell. The protoplasts formed a cell wall and eventually reverted to normal mycelial form in liquid medium. The process of regeneration was studied under phase-contrast and electron microscopes. The protoplast built a very thick wall prior to the protrusion of a germ-tube like hypha. Golgi apparatus-like structures appeared in the early stage of regeneration and disappeared later. Electron-transparent amorphous structures accumulated during regeneration. Lomasomes were observed in the regenerated cell walls.  相似文献   

16.
The ultrastructural organization of actively secreting barley (Hordeum vulgare L. cv. Himalaya) aleurone cells was examined using ultrarapid-freezing (<-10 000°C s-1) followed by freeze-fracture and freeze-substitution. Our analysis indicates that much of the evidence supporting a direct pathway from the endoplasmic reticulum (ER) to the plasma membrane (i.e. bypassing the Golgi apparatus) for the secretion of -amylase (EC 3.2.1.1) may not be valid. Cryofixed ER cisternae show no sign of vesiculation during active -amylase secretion in gibberellic acid (GA3)-treated cells. At the same time, Golgi complexes are abundant and numerous small vesicles are associated with the edges of the cisternae. Vesicles appear to be involved in the delivery of secretory products to the plasma membrane since depressions containing excess membrane material appear there. Treatment with GA3 also induces changes in the composition of Golgi membranes; most notably, the density of intramembrane particles increases from 2700 m-2 to 3800 m-2 because of an increase of particles in the 3–8.5-nm size range. A slight decrease in 9–11-nm particles also occurs. These changes in membrane structure appear to occur as the Golgi complex becomes committed to the processing and packaging of secretory proteins. We suggest that secretory proteins in this tissue are synthesized in the abundant rough ER, packaged in the Golgi apparatus, and transported to the plasma membrane via Golgi-derived secretory vesicles. Mobilization of reserves is also accompanied by dynamic membrane events. Our micrographs show that the surface monolayer of the lipid bodies fuses with the outer leaflet of the bilayer of protein-body membranes during the mobilization of lipid reserves. Following the breakdown of the protein reserves, the protein bodies assume a variety of configurations.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - P protoplasmic - E exoplasmic  相似文献   

17.
J M Westafer  R M Brown 《Cytobios》1976,15(58-59):111-138
The ultrastructure of the cotton fibres was examined after developing successful fixation methods. Fibre cells were fixed at different stages of development. In cells which were elongating and producing primary cell walls, the Golgi apparatus appeared to be directly involved in secretion and synthesis of primary wall components. In cells which were synthesizing thick secondary cell walls, evidence suggested a major role for the endoplasmic reticulum and plasma memebrane in the synthesis and secretion of secondary wall materials. The possibility of a shift from a Golgi apparatus pathway for primary wall synthesis to an endoplasmic reticulum pathway for secondary wall synthesis is discussed. Plasma membrane micro-invaginations are present only during secondary wall synthesis and may represent sites of cellulose assembly. A model for primary wall biogenesis via the Golgi apparatus is presented, and the potential of the cotton fibre as a model system for studying cellulose biogenesis in higher plants is discussed.  相似文献   

18.
The aim of this work was to identify proteins specific for plant cell membranes which could then be used as unique markers. A crude membrane fraction was isolated from corn coleoptiles and separated on non-linear sucrose density gradients. Separation of endoplasmic reticulum (NADH-cytochrome c reductase), mitochondria (cytochrome c oxidase), golgi (inosine diphosphatase), and plasma membranes (N-1-naphthylphthalamic acid-binding) was achieved. The membrane proteins from the gradient fractions were separated using sodium dodecyl sulphate-poly-acrylamide gel electrophoresis and the gels stained with coomassie blue or with concanavalin A/peroxidase to detect glycoproteins. Proteins specific for the various membranes were identified. Five proteins including two glycoproteins were plasma membrane markers. Protoplasts were isolated and iodinated using lactoperoxidase/glucose oxidase covalently attached to beads. Eleven iodinated proteins were found and three of these corresponded to proteins specifically associated with plasma membranes in the density gradients. Two methods for detecting Ca2+-binding proteins following sodium dodecylsulphate polyacrylamide gel electrophoresis were employed. The majority of such proteins were found in the endoplasmatic reticulum and one was specific for plasma membranes. In vitro and in vivo phosphorylation of membrane proteins was examined and the majority of proteins phosphorylated were glycoproteins. Two of the phosphorylated proteins (Mr=110,000 and 20,000) were also iodinated on protoplasts and may be part of the plasma membrane ATPases.Abbreviations ER endoplasmic reticulum - IDP inosine diphosphate - NPA N-1-naphthylphthalamic acid  相似文献   

19.
Protoplasts prepared from complementary haploid strains ofSaccharomyces cerevisiae were studied with regard to their ability of conjugating. Neither fresh protoplasts nor the growing protoplasts possessing fibrillar walls exhibited sex specific agglutination or fusion. However, they were capable of inducing sexual activation in normal cells of opposite mating type. After completing the regeneration of cell walls the protoplasts could conjugate either with each other or with cells of opposite sex. The frequency of conjugations was low, about 1%, and was largely dependent on the degree of completition of the wall during regeneration. From the results the following conclusions may be drawn: 1. The initiation of mating is dependent on the integrity of the cell wall. 2. The sex specific morphogenetic changes do not occur in wall-less protoplasts but may happen after the protoplasts have regenerated their cell walls. 3. The lysis of cell walls does not occur until the walls come into close contact. 4. The fusion of plasma membranes in sex-activated protoplasts cannot be induced by artefucial agglutination.  相似文献   

20.
Protoplasts were obtained from tetraploid wheat (Triticum timopheevi Zhuk.) suspension culture by incubation in solution of 1 % pectinase 500, 1 % driselase and 1 % cellulase and cultivated in Schenk and Hildebrandt medium. Freshly isolated protoplasts contained dense cytoplasm and constricted organellae exhibited negative contrast of their membranes. Together with normal protoplasts huge multinucleate protoplasts were present in the population. 3 h after plating, the cytoplasm showed normal appearance, the negative contrast of membranes was not evident any longer. Cisternae of endoplasmic reticulum and Golgi apparatus were numerous. There were some vesicles and fibres on the protoplast surface. 8 d after plating, many dividing cells were found out and cell clumps arosen in this way were present in the culture. Some of the protoplasts particularly those originally multinucleate ones were upset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号