首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The specific binding of [3H]oxytoxin to uterine membrane preparations derived from different species at late pregnancy was examined. The highest receptor density (bmax value) was found in membranes derived from the myometria of guinea pigs between day 60 post-conception (bmax = 3.6 +/- 0.1 pmol/mg) and day 65 (bmax = 4.4 +/- 0.1 pmol/mg). The similarity of Kd values for oxytocin binding (Kd = 2.6 +/- 0.2 nM) and for vasopressin binding (Kd = 2.1 +/- 0.4 nM) to the same membranes derived from a guinea pig myometrium indicate a homogeneous population of high-affinity binding sites which do not discriminate between these two hormones. Competitive binding experiments with specific oxytocin agonists containing either sarcosine or N-methylalanine in the place of Pro7 demonstrated that these myometrial receptors have the pharmacological properties of oxytocin receptors. The analogue of 1-deamino-[8-lysine]vasopressin containing a photoreactive azidophenylamidino group at the sidechain of Lys8 retained roughly the same receptor affinity as oxytocin. In photoaffinity labelling experiments with the tritium-labelled analogue a membrane protein from guinea pig myometrium with an apparent relative molecular mass Mr of 78,000 +/- 5000 (n = 13) was preferentially labelled. The labelling of this protein was completely suppressed by a 100-fold molar excess of either oxytocin, or [Sar7]oxytocin or [Thr4, Sar7]oxytocin, but not by other peptide hormones. These results provide evidence that the labelled 78,000-Mr protein is a myometrial oxytocin-receptor protein.  相似文献   

2.
Plasma membranes from rat mammary gland containing a high concentration of [3H]oxytocin binding sites (2.8 pmol/mg protein) were used for photoaffinity labelling experiments. Competitive binding experiments show that these receptors bind with high affinity the specific oxytocin agonist [Thr4, Sar7]oxytocin and the analogue of 1-deamino-[8-lysine]vasopressin containing a photoreactive azidobenzoyl group (Abz) at the side chain of lysine. The tritium-labelled (50 Ci/mol) photoreactive analogue incorporated into a membrane protein with an apparent relative molecular mass of 65,000 +/- 3000 Da (n = 16). The labelling of this protein was completely suppressed by an excess of oxytocin.  相似文献   

3.
Cells from the zona glomerulosa of rat adrenals were isolated and maintained for 3 days in primary culture. Specific vasopressin binding was determined by using [3H]vasopressin. [3H]Vasopressin binding was time-dependent (half-time of about 2 min for 6 nM free ligand) and reversible on addition of unlabelled vasopressin (80% dissociation within 30 min). Dose-dependent [3H]vasopressin binding at equilibrium indicated that vasopressin interacted with two populations of sites: high-affinity sites (dissociation constant, Kd = 1.8 nM; maximal binding capacity = 10 fmol/10(6) cells) and low-affinity sites. Vasopressin increased the cellular content of labelled inositol mono-, bis- and tris-phosphate in cells prelabelled with myo-[3H]inositol. The vasopressin concentration eliciting half-maximal inositol phosphate accumulation was very close to the Kd value for vasopressin binding to high-affinity sites. Competition experiments using agonists and antagonists with enhanced selectivity for previously characterized vasopressin receptors indicated that vasopressin receptors from rat glomerulosa cells are V1 receptors of the vascular or hepatic subtype. The detected specific vasopressin-binding sites might represent the specific receptors mediating the mitogenic and steroidogenic effects of vasopressin on glomerulosa cells from rat adrenals.  相似文献   

4.
The addition of oxytocin to minces of rat mammary gland preincubated with (3H)myo-inositol stimulated the formation of inositol phosphate (IP) in both lactating and regressed glands. Stimulation was about 4 times greater in regressed tissue, consistent with an oxytocin effect on myoepithelial cells, which are enriched relative to epithelial cells during regression. The stimulation of IP formation was agonist specific, as shown with several oxytocin analogs. Arginine vasopressin (AVP), however, was more than twice as potent as oxytocin in stimulating IP formation in regressed tissue. Both V1- and V2-selective AVP receptor antagonists inhibited the stimulation of IP formation by oxytocin. The V1-selective antagonist was about 10 times more inhibitory than the V2-selective antagonist. [3H]AVP was bound to plasma membranes from the mammary gland of the lactating rat with an apparent Kd of about 0.7 nM and Bmax of 54.6 fmol/mg protein. These values were comparable with those found for AVP receptors of kidney plasma membranes. Our results suggest that the stimulation of IP formation in rat mammary gland by oxytocin occurs through occupancy of AVP, and not oxytocin, receptor sites. A second aspect of these studies was to determine if a recently developed iodinated antagonist of oxytocin-induced uterine contractions could be used as a specific probe for oxytocin receptors in the rat mammary gland. Under steady state conditions, [125I]d(CH2)5(1)[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT was bound to a single class of independent binding sites in mammary gland plasma membrane from lactating rats with an apparent Kd of 65 pM and Bmax of 225 fmol/mg protein. Noniodinated antagonist had an affinity about 150 times less than the monoiodinated form. The affinity of binding sites for AVP was 10 times greater than the noniodinated antagonist and 2.4 times greater than oxytocin. In view of the presence of AVP receptors in mammary tissue, these findings suggested that the iodinated antagonist binds to AVP receptors. However, comparison of the binding of iodinated antagonist to plasma membranes from the lactating mammary gland with kidney medulla and liver, target sites for AVP, showed that binding was specific for the mammary gland and hence oxytocin receptors. The concentration of oxytocin receptors in mammary gland, as determined by [125I]d(CH2)5(1)[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT binding, was 4 times greater than the concentration of high-affinity AVP receptors, as determined by [3H]AVP binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
More than 90 percent of the cells isolated from the mammary gland of lactating rats with 0.1 percent collagenase were viable by dye exclusion. Myoepithelial cells comprised about one-third of the mammary cells and appeared to be morphologically intact in electron micrographs. [(3)H]Oxytocin-binding activity was localized in an enriched myoepitheial cell fraction obtained by density gradient centrifugation of the isolated cells. The amount of [(3)H] oxytocin bound at 20 degree C and pH 7.6 was proportional to the concentration of oxytocin and the number of cells, reaching a steady state by 40 min. About 0.45 fmol of oxytocin were bound per 10(6) cells. There was a single class of independent binding sites with an apparent K(d), estimated from equilibrium conditions, of 5 nM. This value agrees within experimental error with the value calculated from the ratio of reverse to forward rate constants (5.8 x 10(-4)s(-1) and 2.2 x 10(5) M(-1)s(-1), respectively), consistent with a single-step model for the interaction of oxytocin with binding sites on the cells. Erythrocytes bound only 3.5 percent of the amount of oxytocin bound by an equal number of mammary cells. Oxytocin analogues competed with [(3)H]oxytocin for binding sites in the following order: [deamino]oxytocin > [4-threonine]oxytocin > oxytocin > [O- methyltyrosine]oxytocin > [8-lysine]vasopressin; [lysine]-bradykinin and [4-proline]oxytocin were not inhibitory in the dose ranges tested. These results demonstrate that isolated mammary cells possess oxytocin receptors with properties comparable to those found in broken mammary cell preparations.  相似文献   

6.
The accumulation of inositol phosphates in WRK 1 cells, stimulated with a range of vasopressin concentrations, was diminished by prior exposure to cholera toxin or forskolin, whilst that observed in the presence of maximal concentrations of the hormone was enhanced in pertussis-toxin-treated cells. In the presence of [32P]NAD+, both cholera toxin and pertussis toxin provoked the labelling of peptides with approximate Mrs of 45,000 and 41,000 respectively in the membranes of WRK 1 cells. Exposure to cholera toxin or forskolin for 15-18 h enhanced cyclic AMP accumulation in these cells. The concentrations of these agents which provoked half-maximal cyclic AMP accumulation were similar to those required to diminish receptor-mediated inositol phosphate accumulation by 50%. In contrast, half-maximal ADP-ribosylation of the 45,000Mr peptide needed 100-fold greater concentrations of the toxin than were effective in provoking half-maximal inhibition of inositol phosphate accumulation. Cholera toxin or forskolin also reduced the maximal specific binding, to intact WRK 1 cells, of both [3H][Arg8]vasopressin and the V1a antagonist [3H][beta-mercapto-beta,beta-cyclopentamethylenepropionic acid,O-methyl-Tyr2, Arg8]vasopressin. The kinetics for the loss of this binding capacity following cholera-toxin treatment were very similar to those describing the diminution of vasopressin-stimulated inositol phosphate accumulation in the same cells.  相似文献   

7.
An assay for beta-adrenergic receptors in isolated human fat cells   总被引:3,自引:0,他引:3  
The beta-adrenergic receptors have been characterized in isolated human adipocytes using a potent beta-adrenergic antagonist (-)-[3H]dihydroalprenolol. Binding of (-)-[3H]dihydroalprenolol to isolated fat cells was stereospecific and saturable, the maximum number of binding sites calculated being 7.8 +/- 2.2 pmol of bound ligand/10(7) cells, corresponding to 450,000 binding sites/cell. The dissociation constant was estimated to be 2.7 +/- 1.1 nM. The results with competition-inhibition experiments using beta-adrenergic agonists and antagonists indicated that the binding sites in isolated adipocytes were predominantly of the beta1-subtype; about 80% of the receptors were of this type. With the present method, specific beta-adrenergic receptor number and affinity in isolated human adipocytes could be determined in about 1 g of human adipose tissue.  相似文献   

8.
Primary cultures of cells from late pregnant rat myometrium contain B2 kinin receptors through which bradykinin (BK) stimulates inositol phosphate (InsP) formation and arachidonic acid (20:4) release. Equilibrium binding at 4 degrees C revealed that [3H]BK identified a maximal number of cell surface B2 kinin receptor binding sites on rat myometrial cells of 308 +/- 78 fmol/10(6) cells with apparently a single equilibrium dissociation constant of 1.8 +/- 0.2 nM. At 37 degrees C, [3H]BK binding was associated with a time-dependent decrease in the reversibility of the binding. This decrease was due in part to formation of slowly dissociating cell surface receptor [3H]BK binding and in part to internalization of the receptor-bound [3H]BK. Exposure of labeled cells to BK resulted in dose-dependent increases in [3H]InsP3, [3H]InsP2 ([3H]Ins(1,4)P2), and [3H]InsP1 ([3H]Ins(1)P1) formation and [3H]20:4 release. Pretreatment with 100 ng/mL pertussis toxin did not perturb BK stimulation of [3H]InsP formation but partially (approximately 30%) inhibited BK stimulation of [3H]20:4 release. BK stimulation of [3H]20:4 release was directly proportional to the number of receptor sites occupied by BK. In contrast, stimulation of [3H]InsP formation required a threshold level of receptor occupancy, which decreased as a function of time of BK exposure. These results show that BK interacts with B2 kinin receptors on rat myometrial cells with apparently a single affinity through which BK stimulates [3H]InsP formation and [3H]20:4 release. BK stimulation of [3H]InsP formation requires a threshold BK concentration, which decreases with time, and we suggest that the decrease is due to a time-dependent formation of a BK receptor binding state from which BK slowly dissociates.  相似文献   

9.
The binding site for [3H]SQ29,548, a potent and selective thromboxane A2 (TXA2) receptor antagonist, was studied in cultured vascular endothelial cells (VEC) of the rat aorta. Specific binding of [3H]SQ29,548 to rat VEC at 24 degrees C was saturable, displaceable and of high affinity. Scatchard analysis of equilibrium binding studies indicated that rat VEC contain a single class of binding sites with a Kd of 2.7 nM. The number of maximum binding sites (25.8 fmol/10(6) cells) for [3H]SQ29,548 on rat VEC was respectively 23 and 3.2 times more than that on rat platelets and rat vascular smooth muscle cells. Four TXA2 receptor antagonists and U46619 completely suppressed [3H]SQ29,548 binding to rat VEC, whereas other prostanoids, such as PGD2, PGF2 alpha, PGE1 and Iloprost, displaced the ligand binding only at considerably higher concentrations. These results suggest that the specific receptor for TXA2 is present in rat vascular endothelial cells.  相似文献   

10.
The V1 vasopressin receptor has been solubilized from rat liver membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammoniol]-1-propanesulfonate (CHAPS) and reconstituted into phospholipid vesicles. There is essentially complete solubilization of the receptor by 3% CHAPS at a protein concentration of 15 mg/ml. Reconstitution into soybean phospholipid vesicles is readily achieved either by gel filtration chromatography or by membrane dialysis. The binding of [3H]vasopressin to proteoliposomes is specific, saturable, reversible, and magnesium-dependent. In contrast, the detergent-soluble vasopressin receptor does not display specific binding. The apparent affinity of the reconstituted receptor for [3H]vasopressin is approximately 4-fold lower than that of the receptor in native membranes. In addition, the binding of [3H]vasopressin to reconstituted vesicles is not sensitive to 100 microM guanosine 5'-O-thiotriphosphate (GTP gamma S) as it is in native membranes. However, the apparent affinity of the reconstituted receptor for ligand approximates that of native membranes when membranes are prebound with vasopressin prior to solubilization and reconstitution into vesicles. Furthermore, vesicles reconstituted from membranes prebound with vasopressin show GTP gamma S sensitivity of [3H] vasopressin binding. This finding strongly suggests that vasopressin stabilizes a receptor-G-protein complex during solubilization. The rat liver vasopressin receptor is a glycoprotein, as shown by its specific binding to the lectin "wheat germ agglutinin." The vasopressin receptor can be reconstituted from the N-acetylglucosamine-eluted peak of a wheat germ agglutinin-Sepharose column, and [3H] vasopressin binding activity is purified 5-6-fold from membranes by this chromatographic procedure. The functionality of the partially purified receptor is indicated by its ability to bind ligand with high affinity and by its ability to functionally interact with a G-protein when vasopressin is bound prior to solubilization.  相似文献   

11.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

12.
The distribution of [3H]oxytocin binding sites among various subcellular fractions of rat myometrium paralleled the distribution of 5'-nucleotidase, a plasma membrane marker enzyme, but not of NADPH-cytochrome c reductase or succinate-cytochrome c reductase, which are endoplasmic reticulum and mitochondrial marker enzymes respectively. [3H]Oxytocin binding to the most enriched plasma membrane fraction showed the degree of selectivity with respect to hormone analogues that is expected for the oxytocin receptor. The binding of oxytocin to this fraction showed an apparent Kd of 1.98 X 10(-9) M and a capacity of 1.28 pmol mg-1. It is concluded that the oxytocin receptor is located on the plasma membrane of the smooth muscle cells of the rat uterus.  相似文献   

13.
The binding of 3H-labelled neurohypophyseal nonapeptide hormone, oxytocin, to isolated rat fat cells has been measured under conditions where this compound elicits the known activation of glucose oxidation by these cells, called "insulin-like" action. Uptake by the cells of the [3H]peptide as a function of various concentrations of the hormone in the medium indicated the presence of two classes of binding sites with different apparent affinities and capacities. The sites of the first type exhibit a rather high affinity, but low capacity, for oxytocin (5 nM; 3 X 10(4) sited per cell) and appear to be saturable under a reversible process. Evaluation of dose-response relationships suggest that they may be directly related to the measured biological response (i.e. activation of the glucose to 14CO2 conversion). Competition experiments show that [3H]oxytocin binding to the cells remains constant within a large range of insulin concentrations. The apparent capacity of different hormone analogs to compete with oxytocin for binding to this class of receptors has been evaluated and compared with the measured insulin-like activity of these different compounds. The sites of the second category have significantly lower affinity, but higher capacity for oxytocin, and were found to be not saturable under the experimental conditions. [3H]Oxytocin uptake by ghosts prepared from the isolated fat cells showed striking similarities to the binding process described for whole cells, although the affinity and total capacity of the former were found to be slightly lower. The basal and adrenalin-stimulated adenylate cyclase of these fractions appeared to be unaffected by various concentrations of oxytocin. It is concluded that there may exist on the rat fat cell membranes a discrete number of oxytocin receptors possessing high specificity for oxytocin and exhibiting affinities and kinetic behaviour similar to those of other characterized oxytocin receptors. They are believed to be independent of the other hormonal receptors of the rat fact cells.  相似文献   

14.
Fenoldopam (SKF 82526), a dopamine agonist which exhibits D-1 receptor subtype selectivity, was evaluated as a radioligand for this receptor subtype. In saturation studies in rat striatal membrane preparations, [3H]-fenoldopam appeared to label a single binding site with a KD of 2.3 +/- 0.1 nM and a Bmax of 590 +/- 40 fmoles/mg protein. In competition binding experiments, binding was shown to be stereoselective, and rank ordering of affinities of dopaminergic and non-dopaminergic compounds closely correlated with potencies of these compounds in stimulating or inhibiting dopamine-sensitive adenylate cyclase (D-1) and in binding to D-1 sites labelled with the antagonist [3H]-cis-flupenthixol. The most potent competitors were the recently identified D-1 selective antagonists, SCH 23390 and SKF R-83566. [3H]-Fenoldopam was also used to assess agonist/D-1 receptor interactions. The results suggest that [3H]-fenoldopam is a useful and selective agonist radioligand for the D-1 receptor.  相似文献   

15.
Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (3H)-AVP was found to bind to a single class of sites with high affinity (Kd = 2.20 +/- 0.18 nM) and low capacity (Bmax = 17.4 +/- 1.8 fmol/10(6) Leydig cells). Binding displacements with specific selective analogs of AVP indicated the presence of V1 subtype receptors on Leydig cells. The ability of AVP to displace (3H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (3H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells (P less than 0.001). This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation (P less than 0.01). AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation (P less than 0.001). This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels. We conclude from these data that AVP is capable of modulating steroidogenesis in Leydig cells through specific and functionally V1 receptor subtype and postulate that this effect may be part of an intratesticular paracrine/autocrine control mechanism.  相似文献   

16.
Synaptic plasma membranes containing binding sites for tritiated oxytocin and arginine vasopressin were isolated from rat hippocampus. The binding parameters for oxytocin and vasopressin sites were determined and statistically analysed. The fitted curve for oxytocin binding was compatible with a model where the ligand interacts with two classes of receptors with different capacities and affinities. The sites with low binding capacity had an apparent dissociation constant at equilibrium of 1.8 nM and a maximal binding capacity of 17 fmol/mg protein. By contrast, the Scatchard plot failed to reveal a marked heterogeneity in the population of sites labelled with [3H]vasopressin with an affinity of 1.5 nM and a maximal binding capacity of 39 fmol/mg protein. The specificity of these binding sites, tested in competition experiments, revealed that these neurohypophyseal hormones labelled two distinct populations of sites. One population with a high affinity for vasopressin, oxytocin and vasotocin, the other population with a high affinity for vasopressin and vasotocin and a low affinity for oxytocin. Adenylate cyclase activity was not affected by arginine-vasopressin or oxytocin. These receptors are compared with previously characterized peripheral receptors.  相似文献   

17.
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not.  相似文献   

18.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

19.
Somatostatin receptors in the rat pituitary gland were characterized by binding analysis with a radioiodinated high affinity somatostatin analogue, 125I-Tyr1[D-Trp8]somatostatin. Receptor binding of this derivative reached equilibrium at 30 min and was maintained at a plateau for at least 60 min. Two L-Trp8- labeled somatostatin analogues. 125I-Tyr1- and [125I-Tyr11]somatostatin, displayed less stable and lower specific uptake and higher nonspecific binding. In contrast to the rapid degradation of the L-Trp8 ligands during binding assay, 125I-Tyr1]D-Trp8]somatostatin retained more than 80% of its binding activity after 90 min of incubation with pituitary particles. Pituitary particles bound 125I-Tyr1]D-Tyr8]somatostatin with high affinity (Ka = 8.6 +/- 1.2 X 10(9) M-1) and capacity of 54.4 +/- 2.6 fmol/mg. These binding sites showed specificity for the native peptide and its active analogues, and other peptide hormones, including angiotensin II, thyrotropin-releasing hormone, vasopressin, oxytocin, substance P, and gonadotropin-releasing hormone, did not inhibit tracer binding. A good correlation was observed between the binding affinities of several somatostatin analogues and their potencies as inhibitors of growth hormone release in rat pituitary cells. These findings emphasize the physiological importance of the pituitary somatostatin receptor in mediating the inhibitory action of the peptide on growth hormone release. The use of Tyr1[d-Trp8]somatostatin as a labeled ligand permits accurate determinations of the binding affinity and concentration of receptors for somatostatin in the normal pituitary gland and provides a basis for further studies of somatostatin receptor regulation and receptor-mediated cellular effects of the tetradecapeptide.  相似文献   

20.
[3H]Quipazine was used to label binding sites in rat brain membranes that display characteristics of a 5-hydroxytryptamine3 (5-HT3) receptor. The radioligand binds with high affinity (KD, 1.2 +/- 0.1 nM) to a saturable population of sites (Bmax, 3.0 +/- 0.4 pmol/g of tissue) that are differentially located in the brain. Specific [3H]quipazine binding is not affected by guanine or adenine nucleotides. ICS 205-930, BRL 43964, Lilly 278584, and zacopride display less than nanomolar affinity for these sites whereas MDL 72222 is approximately one order of magnitude less potent. The pharmacological profile of the binding site is in excellent agreement with that of 5-HT3 receptors characterized in peripheral physiological models. We conclude that [3H]quipazine labels a 5-HT3 receptor in the rat CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号