首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified widerborst (wdb), a B' regulatory subunit of PP2A, as a conserved component of planar cell polarization mechanisms in both Drosophila and in zebrafish. In Drosophila, wdb acts at two steps during planar polarization of wing epithelial cells. It is required to organize tissue polarity proteins into proximal and distal cortical domains, thus determining wing hair orientation. It is also needed to generate the polarized membrane outgrowth that becomes the wing hair. Widerborst activates the catalytic subunit of PP2A and localizes to the distal side of a planar microtubule web that lies at the level of apical cell junctions. This suggests that polarized PP2A activation along the planar microtubule web is important for planar polarization. In zebrafish, two wdb homologs are required for convergent extension during gastrulation, supporting the conjecture that Drosophila planar cell polarization and vertebrate gastrulation movements are regulated by similar mechanisms.  相似文献   

2.
Cells in a variety of developmental contexts sense extracellular cues that are given locally on their surfaces, and subsequently amplify the initial signal to achieve cell polarization. Drosophila wing cells acquire planar polarity along the proximal-distal (P-D) axis, in which the amplification of the presumptive cue involves assembly of a multiprotein complex that spans distal and proximal boundaries of adjacent cells. Here we pursue the mechanisms that place one of the components, Frizzled (Fz), at the distal side. Intracellular particles of GFP-tagged Fz moved preferentially toward distal boundaries before Fz::GFP and other components were tightly localized at the P/D cortex. Arrays of microtubules (MTs) were approximately oriented along the P-D axis and these MTs contributed to the formation of the cortical complex. Furthermore, there appeared to be a bias in the P-D MTs, with slightly more plus ends oriented distally. The hypothesis of polarized vesicular trafficking of Fz is discussed.  相似文献   

3.
Several epitheliums exhibit a clear polarity that lies within the plane of the epithelium. This polarity, referred to as planar polarity or tissue polarity, is oriented perpendicular to the apical-basal polarity of the epithelium. Over the last two decades, the genetic and molecular bases of planar polarity have been intensively investigated in Drosophila. Recent studies have shown that establishment of planar polarity relies on the unipolar distribution of a small number of signaling molecules localizing at the apical cortex. Unipolar localization of planar polarity proteins defines two opposite and complementary cortical domains. These domains show a stereotyped orientation at the tissue level. Positioning of these cortical domains is coordinated at the tissue level by a second class of signaling molecules that form an activity gradient across the epithelium. Together these data have led to a general model of planar polarity establishment. Considering that planar polarity genes have been conserved from flies to vertebrates, this model may be useful for our understanding of epithelium biology in mammals.  相似文献   

4.
Although microtubules are known to be essential for chromosome segregation during cell division, they also play important roles in the regulation and function of cell polarity. Cell polarization is fundamental to appropriate tissue patterning and the regulation of cellular diversity during animal development. In polarized cells, microtubules are often organized asymmetrically along the polarity axis. Recent studies show that such asymmetry in microtubule organization is important to connect a cell's polarization with its polarized functions. In some cases, asymmetrically organized microtubule arrays themselves induce cell polarity. Here we present an overview of the mechanisms and functions of asymmetric microtubule organization and discuss the possible role of microtubule asymmetry in the symmetry-breaking that leads to cell polarization.  相似文献   

5.
Patterned gene expression directs bipolar planar polarity in Drosophila   总被引:1,自引:0,他引:1  
During convergent extension in Drosophila, polarized cell movements cause the germband to narrow along the dorsal-ventral (D-V) axis and more than double in length along the anterior-posterior (A-P) axis. This tissue remodeling requires the correct patterning of gene expression along the A-P axis, perpendicular to the direction of cell movement. Here, we demonstrate that A-P patterning information results in the polarized localization of cortical proteins in intercalating cells. In particular, cell fate differences conferred by striped expression of the even-skipped and runt pair-rule genes are both necessary and sufficient to orient planar polarity. This polarity consists of an enrichment of nonmuscle myosin II at A-P cell borders and Bazooka/PAR-3 protein at the reciprocal D-V cell borders. Moreover, bazooka mutants are defective for germband extension. These results indicate that spatial patterns of gene expression coordinate planar polarity across a multicellular population through the localized distribution of proteins required for cell movement.  相似文献   

6.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

7.
Epithelial cells can be polarized along two axes, namely in the apical-basolateral axis and in the horizontal plane of the epithelium. Vertebrate examples of planar polarization include aspects of skin development or features in internal organs, such as the inner ear epithelium. In insects like Drosophila, adult cuticular structures show planar polarization. Studies on planar polarity in Drosophila have identified several genes that regulate this process. Notably, the Frizzled receptor and its signaling cascade provide an entry point to the molecular aspects of planar polarization. A recent study by Gubb et al.((1)) of the prickle locus, which encodes a cytoplasmic protein with three LIM domains, provides new insights and raises several interesting questions that can now be addressed. Pk might serve a scaffolding function involved in assembling a protein complex required for planar polarity establishment.  相似文献   

8.
《遗传学报》2023,50(2):63-76
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six “core” proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left–right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal–distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.  相似文献   

9.
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.One of the ultimate goals in cell biology is to understand how cells are assembled. As in the development of multicellular organisms, single cells need to form distinct spatial domains with specific form, structure, and functions. How do cells organize themselves in space to form a specific shape and size?The fission yeast Schizosaccharomyces pombe is an attractive, simple unicellular model organism for studying cell morphogenesis. These are nonmotile cells with highly invariant shape 8–14 µm long and 3 µm in diameter. The relative simplicity of the cells and the powers of genetic approaches and live cell imaging facilitate rigorous and quantitative studies.Here, we review the current understanding of spatial regulation in fission yeast. The cell defines distinct cortical domains at each of the cell tips, along the sides of cells, and at the cell division plane. Each cortical domain is characterized by different sets of molecules, which impart distinct functions. In particular, as it proceeds through its cell cycle, the cell delineates distinct actin-rich cortical regions at cell tips for polarized cell growth and at the middle for cell division. In both cases, a self-organizing network of microtubules directly or indirectly contributes to the proper localization of these markers. In cell polarity, microtubule ends transport polarity factors to the plasma membrane, where they function to recruit protein complexes involved in actin assembly. In cytokinesis, a medial cortical site is marked by an interacting system of microtubules, the nucleus, and cell tip factors, and functions to organize actin filaments into a cytokinetic ring. This reliance on microtubules contrasts with polarity mechanisms in budding yeast in which spatial cues are dependent on septins and actin, but not microtubules. As many of these processes involve conserved proteins, this work in fission yeast contributes toward understanding the more complex microtubule-based regulation of cell migration, cytokinesis, and cell shape regulation in animal cells. This work in fission yeast thus provides a paradigm for how a self-organizing system can shape a cell.  相似文献   

10.
Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal–distal (P–D) axis by the Dachsous‐Fat‐Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P–D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.  相似文献   

11.
During planar polarization of the Drosophila wing epithelium, the homophilic adhesion molecule Flamingo localizes to proximal/distal cell boundaries in response to Frizzled signaling; perturbing Frizzled signaling alters Flamingo distribution, many cell diameters distant, by a mechanism that is not well understood. This work identifies a tissue polarity gene, diego, that comprises six ankyrin repeats and colocalizes with Flamingo at proximal/distal boundaries. Diego is specifically required for polarized accumulation of Flamingo and drives ectopic clustering of Flamingo when overexpressed. Our data suggest that Frizzled acts through Diego to promote local clustering of Flamingo, and that clustering of Diego and Flamingo in one cell nonautonomously propagates to others.  相似文献   

12.
The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.  相似文献   

13.
Elongation of the body axis is accompanied by the assembly of a polarized cytoarchitecture that provides the basis for directional cell behavior. We find that planar polarity in the Drosophila embryo is established through a sequential enrichment of actin-myosin cables and adherens junction proteins in complementary surface domains. F-actin accumulation at AP interfaces represents the first break in planar symmetry and occurs independently of proper junctional protein distribution at DV interfaces. Polarized cells engage in a novel program of locally coordinated behavior to generate multicellular rosette structures that form and resolve in a directional fashion. Actin-myosin structures align across multiple cells during rosette formation, and adherens junction proteins assemble in a stepwise fashion during rosette resolution. Patterning genes essential for axis elongation selectively affect the frequency and directionality of rosette formation. We propose that the generation of higher-order rosette structures links local cell interactions to global tissue reorganization during morphogenesis.  相似文献   

14.
During vertebrate gastrulation, convergence and extension cell movements are coordinated with the anteroposterior and mediolateral embryonic axes. Wnt planar cell polarity (Wnt/PCP) signaling polarizes the motile behaviors of cells with respect to the anteroposterior embryonic axis. Understanding how Wnt/PCP signaling mediates convergence and extension (C&E) movements requires analysis of the mechanisms employed to alter cell morphology and behavior with respect to embryonic polarity. Here, we examine the interactions between the microtubule cytoskeleton and Wnt/PCP signaling during zebrafish gastrulation. First, we assessed the location of the centrosome/microtubule organizing center (MTOC) relative to the cell nucleus and the body axes, as a marker of cell polarity. The intracellular position of MTOCs was polarized, perpendicular to the plane of the germ layers, independently of Wnt/PCP signaling. In addition, this position became biased posteriorly and medially within the plane of the germ layers at the transition from mid- to late gastrulation and from slow to fast C&E movements. This depends on intact Wnt/PCP signaling through Knypek (Glypican4/6) and Dishevelled components. Second, we tested whether microtubules are required for planar cell polarization. Once the planar cell polarity is established, microtubules are not required for accumulation of Prickle at the anterior cell edge. However, microtubules are needed for cell-cell contacts and initiation of its anterior localization. Reciprocal interactions occur between Wnt/PCP signaling and microtubule cytoskeleton during C&E gastrulation movements. Wnt/PCP signaling influences the polarity of the microtubule cytoskeleton and, conversely, microtubules are required for the asymmetric distribution of Wnt/PCP pathway components.  相似文献   

15.
A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3-aPKC complex to leave the cortex. Our findings illustrate how microtubules, independently of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC.  相似文献   

16.
Developing neurons can change axonal and dendritic fate upon axonal lesion, but it is unclear whether neurons retain such plasticity when they are synaptically interconnected. To address whether polarity is reversible in mature neurons, we cut the axon of GFP-labeled hippocampal neurons in dissociated and organotypic cultures and found that a new axon arose from a mature dendrite. The regenerative response correlated with the length of the remaining stump: proximal axotomies (<35 microm) led to the transformation of a dendrite into an axon (identity change), whereas distal cuts (>35 microm) induced axon regrowth, similar to what is seen in young neurons. Searching for a putative landmark in the distal axon that could determine axon identity, we focused on the stability of microtubules, which regulate initial neuronal polarization during early development. We found that functionally polarized neurons contain a distinctively high proportion of stable microtubules in the distal axon. Moreover, pharmacological stabilization of microtubules was sufficient to induce the formation of multiple axons out of differentiated dendrites. Our data argue that mature neurons integrated in functional networks remain flexible in their polarity and that mechanisms acting during initial axon selection can be reactivated to induce axon growth out of functionally mature dendrites.  相似文献   

17.
Adler PN  Zhu C  Stone D 《Current biology : CB》2004,14(22):2046-2051
Planar polarity development in the Drosophila wing is under the control of the frizzled (fz) pathway. Recent work has established that the planar polarity (PP) proteins become localized to either the distal, proximal, or both sides of wing cells. Fz and Dsh distal accumulation is thought to locally activate the cytoskeleton to form a hair . Planar polarity effector (PPE) genes such as inturned (in) are not required for the asymmetric accumulation of PP proteins, but they are required for this to influence hair polarity. in mutations result in abnormal hair polarity and are epistatic to mutations in the PP genes. We report that In localizes to the proximal side of wing cells in a PP-dependent and PP-instructive manner. We further show that the function of two other PPE genes (fuzzy and fritz) is essential for In protein localization, a finding consistent with previous genetic data that suggested these three genes function in a common process. These data indicate that accumulation of proteins at the proximal side of wing cells is a key event for the distal activation of the cytoskeleton to form a hair.  相似文献   

18.
Mature ascidian oocytes are arrested in metaphase of meiosis I (Met I) and display a pronounced animal-vegetal polarity: a small meiotic spindle lies beneath the animal pole, and two adjacent cortical and subcortical domains respectively rich in cortical endoplasmic reticulum and postplasmic/PEM RNAs (cER/mRNA domain) and mitochondria (myoplasm domain) line the equatorial and vegetal regions. Symmetry-breaking events triggered by the fertilizing sperm remodel this primary animal-vegetal (a-v) axis to establish the embryonic (D-V, A-P) axes. To understand how this radial a-v polarity of eggs is established, we have analyzed the distribution of mitochondria, mRNAs, microtubules and chromosomes in pre-vitellogenic, vitellogenic and post-vitellogenic Germinal Vesicle (GV) stage oocytes and in spontaneously maturing oocytes of the ascidian Ciona intestinalis. We show that myoplasm and postplasmic/PEM RNAs move into the oocyte periphery at the end of oogenesis and that polarization along the a-v axis occurs after maturation in several steps which take 3-4 h to be completed. First, the Germinal Vesicle breaks down, and a meiotic spindle forms in the center of the oocyte. Second, the meiotic spindle moves in an apparently random direction towards the cortex. Third, when the microtubular spindle and chromosomes arrive and rotate in the cortex (defining the animal pole), the subcortical myoplasm domain and cortical postplasmic/PEM RNAs are excluded from the animal pole region, thus concentrating in the vegetal hemisphere. The actin cytoskeleton is required for migration of the spindle and subsequent polarization, whereas these events occur normally in the absence of microtubules. Our observations set the stage for understanding the mechanisms governing primary axis establishment and meiotic maturation in ascidians.  相似文献   

19.
Siegrist SE  Doe CQ 《Cell》2005,123(7):1323-1335
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size asymmetry, and distinct sibling fates. Khc-73 localizes to astral microtubule plus ends, and Dlg/Khc-73 and Dlg/Pins coimmunoprecipitate, suggesting that microtubules induce Pins/Galphai cortical polarity through Dlg/Khc-73 interactions. The microtubule/Khc-73/Dlg pathway acts in parallel to the well-characterized Inscuteable/Par pathway, but each provides unique spatial and temporal information: The Inscuteable/Par pathway initiates at prophase to coordinate neuroblast cortical polarity with CNS tissue polarity, whereas the microtubule/Khc-73/Dlg pathway functions at metaphase to coordinate neuroblast cortical polarity with the mitotic spindle axis. These results identify a role for microtubules in polarizing the neuroblast cortex, a fundamental step for generating cell diversity through asymmetric cell division.  相似文献   

20.
Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号