首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteroduplexes with single base pair mismatches of known sequence were prepared by annealing separated strands of bacteriophage lambda DNA and used to transfect Escherichia coli. A series of transition (G:T and A:C) and transversion (G:A and C:T) mismatches located throughout most of the bacteriophage lambda cI gene has been examined. The results suggest that the transition mismatches are generally better repaired than the transversion mismatches and that, at least for the transversion mismatches studied, repair efficiency increases with increasing G:C content in the neighboring nucleotide sequence. This specificity of the E. coli mismatch repair system can account, in part, for the similar frequencies of base substitution mutations throughout the E. coli genome.  相似文献   

2.
We have shown previously that dam mutants of Escherichia coli have a weak mutator phenotype which generates mostly transition mutations in the P22 mnt gene. In contrast, in mutD5 cells, which have a strong mutator phenotype, transversion mutations were the most prevalent. A dam-16 mutD5 strain, defective in both DNA polymerase III associated-proofreading and Dam-directed mismatch repair exhibits a strong mutator phenotype but, surprisingly, its mutation spectrum is similar to that of the dam rather than the mutD parent. The most likely explanation is that Dam-directed mismatch repair in the mutD5 strain corrects most of the potential transition mutations (therefore yielding transversions) in the newly synthesised strand. When the dam-16 allele is present together with mutD5 a reduced efficiency of repair as well as loss of strand discrimination and misdirected repair results in the appearance of transition mutations at high frequency.  相似文献   

3.
Specificity of Escherichia coli mutD and mutL mutator strains   总被引:10,自引:0,他引:10  
T H Wu  C H Clarke  M G Marinus 《Gene》1990,87(1):1-5
The products of the mutD and mutL genes of Escherichia coli are involved in proofreading by DNA polymerase III and DNA adenine MTase (Dam)-dependent mismatch repair, respectively. We have used the plasmid-borne bacteriophage P22 mnt gene as a target to determine the types of mutations produced in mutL25 and mutD5 strains. Of 60 mutations identified from mutL25 cells, 52 were transition mutations and of these the AT----GC subset predominated (40 out of 52). The majority of AT----GC mutations were found at the same three sites (hotspots). In contrast, transversion mutations (47 out of 76) were found about twice as frequently as transitions (28 out of 76) from mutD5 bacteria. Two hotspots were identified but at different sites than those in the mutL25 cells. These results suggest that the proofreading function of DNA polymerase III primarily repairs potential transversion mutations while Dam-dependent mismatch repair rectifies potential transition mutations.  相似文献   

4.
A. L. Lu  D. Y. Chang 《Genetics》1988,118(4):593-600
Six different base-pair transversion mismatches are repaired with different efficiencies in an in vitro mismatch repair system. In particular, the T/T and C/C mismatches appear to be less efficiently repaired than the A/A and G/G mismatches. Four A/G and four C/T mismatches at different positions are repaired to different extents. One of the A/G mismatches is repaired equally efficiently when DNA heteroduplexes are fully methylated or hemi-methylated at the d(GATC) sequences. This type of mismatch repair appears to be unidirectional with A to C conversion by acting at A/G mispairs to restore the C/G pairs. This methylation-independent correction is not controlled by the mutH, mutL, mutS, uvrE, uvrB, phr, recA, recF, and recJ gene products. The independence of the transversion mismatch repair of these genes and methylation distinguishes this from the known mismatch repair pathways.  相似文献   

5.
Summary Escherichia coli mutT strains are strong mutators yielding only A · T C · G transversion mutations. These are thought to result from uncorrected (or unprevented) A · G mispairings during DNA replication. We have investigated the interaction of mutT-induced replication errors with the mutHLS-encoded postreplicative mismatch repair system. By measuring mutation frequencies in both forward and reversion systems, we have demonstrated that mutTmutL and mutTmutS double mutators produce no more mutants than expected from simple additivity of the frequencies in the single mutators. We conclude that mutT-induced A · G replication errors are not recognized by the MutHLS system. On the other hand, direct measurements of mismatch repair by transfection of bacteriophage M13mp2 heteroduplex DNA as well as mutational data from strains other than mutT indicate that the MutHLS system can repair at least certain A · G mispairs. We suggest that A · G mispairs may exist in several different conformations, some of which are recognized by the MutHLS system. However, the A · G mispairs normally prevented by the mutT function are refractory to mismatch repair, indicating that they may represent a structurally distinct class.  相似文献   

6.
The alternating ATPase domains of MutS control DNA mismatch repair   总被引:5,自引:0,他引:5  
DNA mismatch repair is an essential safeguard of genomic integrity by removing base mispairings that may arise from DNA polymerase errors or from homologous recombination between DNA strands. In Escherichia coli, the MutS enzyme recognizes mismatches and initiates repair. MutS has an intrinsic ATPase activity crucial for its function, but which is poorly understood. We show here that within the MutS homodimer, the two chemically identical ATPase sites have different affinities for ADP, and the two sites alternate in ATP hydrolysis. A single residue, Arg697, located at the interface of the two ATPase domains, controls the asymmetry. When mutated, the asymmetry is lost and mismatch repair in vivo is impaired. We propose that asymmetry of the ATPase domains is an essential feature of mismatch repair that controls the timing of the different steps in the repair cascade.  相似文献   

7.
以黑龙江省林口县青山林场21年生长白落叶松(Larix olgensis Henry)异地保存种为材料,利用SNP标记方法和DNAMAN软件分析白刀山种源子代林的单核甘酸多态性情况。从分子水平证明长白落叶松具有丰富的遗传多样性,用4CL-A引物检测到178个SNP多态位点。共测序240条EST序列,测序成功193条,测序成功率为80.42%。本研究178个SNP变异中,有126个属于转换类型,占总变异的70.79%;有52个属于颠换类型,占总变异的29.21%,变异类型符合,转换∶颠换=7∶3。在转换类型中,A/G和C/T转换分别占37.08%和33.71%;颠换类型中G/C、A/C、A/T、和G/T分别在占7.87%、8.99%、7.87%和4.99%。但每个家系内的转换和颠换的比例相差较大,没有规律。转换和颠换的比例最大的是554号家系,其比值为7∶1,最小的家系是855号家系,其比值为3∶4。  相似文献   

8.
Single-stranded plasmid DNA, containing the mnt gene, was replicated in vitro with DNA polymerase III holoenzyme. Escherichia coli mutH bacteria, defective in mismatch repair, were transformed with the products of in vitro synthesis. Mutations in mnt were readily identified and 33 out of 65 isolates were single base changes including transition, transversion and frameshift mutations. The remaining 32 isolates were deletions of apparently random length and substitutions (deletion/insertions). The intergenic deletions as well as the transition and frameshift mutations were identical to those previously isolated from mismatch repair-defective cells in vivo.  相似文献   

9.
It has long been known that methylated cytosines deaminate at higher rates than unmodified cytosines and constitute mutational hotspots in mammalian genomes. The repertoire of naturally occurring cytosine modifications, however, extends beyond 5-methylcytosine to include its oxidation derivatives, notably 5-hydroxymethylcytosine. The effects of these modifications on sequence evolution are unknown. Here, we combine base-resolution maps of methyl- and hydroxymethylcytosine in human and mouse with population genomic, divergence and somatic mutation data to show that hydroxymethylated and methylated cytosines show distinct patterns of variation and evolution. Surprisingly, hydroxymethylated sites are consistently associated with elevated C to G transversion rates at the level of segregating polymorphisms, fixed substitutions, and somatic mutations in tumors. Controlling for multiple potential confounders, we find derived C to G SNPs to be 1.43-fold (1.22-fold) more common at hydroxymethylated sites compared to methylated sites in human (mouse). Increased C to G rates are evident across diverse functional and sequence contexts and, in cancer genomes, correlate with the expression of Tet enzymes and specific components of the mismatch repair pathway (MSH2, MSH6, and MBD4). Based on these and other observations we suggest that hydroxymethylation is associated with a distinct mutational burden and that the mismatch repair pathway is implicated in causing elevated transversion rates at hydroxymethylated cytosines.  相似文献   

10.
A model of nucleotide substitution that allows the transition/transversion rate bias to vary across sites was constructed. We examined the fit of this model using likelihood-ratio tests by analyzing 13 protein coding genes and 1 pseudogene. Likelihood-ratio testing indicated that a model that allows variation in the transition/transversion rate bias across sites provided a significant improvement in fit for most protein coding genes but not for the pseudogene. When the analysis was repeated with parameters estimated separately for first, second, and third codon positions, strong heterogeneity was uncovered for the first and second codon positions; the variation in the transition/transversion rate was generally weaker at the third codon position. The transition rate bias and branch lengths are underestimated when variation in the transition/transversion rate was not accommodated, suggesting that it may be important to accommodate variation in the pattern of nucleotide substitution for accurate estimation of evolutionary parameters. Received: 4 November 1997 / Accepted: 19 May 1998  相似文献   

11.
Processing of mispaired and unpaired bases in heteroduplex DNA in E. coli   总被引:1,自引:0,他引:1  
Bacteriophage lambda and phi X 174 DNAs, carrying sequenced mutations, have been used to construct in vitro defined species of heteroduplex DNA. Such heteroduplex DNAs were introduced by transfection, as single copies, into E. coli host cells. The progeny of individual heteroduplex molecules from each infective center was analyzed. The effect of the presence of GATC sequences (phi X 174 system) and of their methylation (lambda system) was tested. The following conclusions can be drawn: some mismatched base pairs trigger the process of mismatch repair, causing a localized strand-to-strand information transfer in heteroduplex DNA: transition mismatches G:T and A:C are efficiently repaired, whereas the six transversion mismatches are not always readily recognized and/or repaired. The recognition of transversion mismatches appears to depend on the neighbouring nucleotide sequence; single unpaired bases (frameshift mutation "mismatches") are recognized and repaired, some equally efficiently on both strands (longer and shorter), some more efficiently on the shorter (-1) strand; large non-homologies (about 800 bases) are not repaired by the Mut H, L, S, U system, but some other process repairs the non-homology with a relatively low efficiency; full methylation of GATC sequences inhibits mismatch repair on the methylated strand: this is the chemical basis of strand discrimination (old/new) in mismatch correction; unmethylated GATC sequences appear to improve mismatch repair of a G:T mismatch in phi X 174 DNA, but there may be some residual mismatch repair in GATC-free phi X 174, at least for some mismatches.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A codon-based model of nucleotide substitution for protein-coding DNA sequences   总被引:34,自引:23,他引:11  
A codon-based model for the evolution of protein-coding DNA sequences is presented for use in phylogenetic estimation. A Markov process is used to describe substitutions between codons. Transition/transversion rate bias and codon usage bias are allowed in the model, and selective restraints at the protein level are accommodated using physicochemical distances between the amino acids coded for by the codons. Analyses of two data sets suggest that the new codon-based model can provide a better fit to data than can nucleotide-based models and can produce more reliable estimates of certain biologically important measures such as the transition/transversion rate ratio and the synonymous/nonsynonymous substitution rate ratio.   相似文献   

13.
14.
氟氏链霉菌离子束注入突变谱的分析   总被引:1,自引:0,他引:1  
用低能N+离子束注入转谷氨酰胺酶产生菌氟氏链霉菌后,通过试验,初步确定了注入的效应曲线,获得了一系列突变菌株。提取原始菌株和突变菌株的DNA,采用PCR反应分段扩增出转谷氨酰胺酶基因进行单链构象多态性分析(SSCP),并将特异性条带克隆测序进行基因突变型的鉴定,分析离子束注入引起链霉菌基因的基因突变类型及特点。结果显示:碱基变异的类型包括转换、颠换和缺失。在检测到的24个碱基突变中,主要是碱基的置换(87.5%),碱基缺失的比例比较小(12.5%)。在碱基置换中,转换的频率(58.3%)高于颠换的频率(29.2%)。转换主要以C→T,A→G为主,颠换以G→T,C→G为主。此外构成DNA的4种碱基均可以被离子束辐照诱发变异,其中胞嘧啶发生突变的频率较高。  相似文献   

15.
There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (kappa) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that kappa should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of kappa in paired sites within stems (kappa(p)) and unpaired sites within loops (kappa(u)). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction kappa(p) > kappa(u). Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with kappa(p) < kappa(u). Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of kappa(p) and kappa(u) could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that kappa may have utility as a simple diagnostic to evaluate proposed secondary structures.  相似文献   

16.
Patterns of substitution in chloroplast encoded trnL_F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of flowering plants, and Huperzia (Lycopodiales). In total, the study included 265 taxa, each with > 900-bp sequences, totaling 0.24 Mb. Both pairwise and phylogeny-based comparisons were used to assess nucleotide substitution patterns. In all six groups, we found that transition/transversion ratios, as estimated by maximum likelihood on most-parsimonious trees, ranged between 0.8 and 1.0 for ingroups. These values occurred both at low sequence divergences, where substitutional saturation, i.e., multiple substitutions having occurred at the same (homologous) nucleotide position, was not expected, and at higher levels of divergence. This suggests that the angiosperm trnL-F regions evolve in a pattern different from that generally observed for nuclear and animal mtDNA (transitional/transversion ratio > or = 2). Transition/transversion ratios in the intron and the spacer region differed in all alignments compared, yet base compositions between the regions were highly similar in all six groups. A>-C transversions were significantly less frequent than the other four substitution types. This correlates with results from studies on fidelity mechanisms in DNA replication that predict A<->T and G<->C transversions to be least likely to occur. It therefore strengthens confidence in the link between mutation bias at the polymerase level and the actual fixation of substitutions as recorded on evolutionary trees, and concomitantly, in the neutrality of nucleotide substitutions as phylogenetic markers.  相似文献   

17.
Statistical and biochemical studies of the genetic code have found evidence of nonrandom patterns in the distribution of codon assignments. It has, for example, been shown that the code minimizes the effects of point mutation or mistranslation: erroneous codons are either synonymous or code for an amino acid with chemical properties very similar to those of the one that would have been present had the error not occurred. This work has suggested that the second base of codons is less efficient in this respect, by about three orders of magnitude, than the first and third bases. These results are based on the assumption that all forms of error at all bases are equally likely. We extend this work to investigate (1) the effect of weighting transition errors differently from transversion errors and (2) the effect of weighting each base differently, depending on reported mistranslation biases. We find that if the bias affects all codon positions equally, as might be expected were the code adapted to a mutational environment with transition/transversion bias, then any reasonable transition/transversion bias increases the relative efficiency of the second base by an order of magnitude. In addition, if we employ weightings to allow for biases in translation, then only 1 in every million random alternative codes generated is more efficient than the natural code. We thus conclude not only that the natural genetic code is extremely efficient at minimizing the effects of errors, but also that its structure reflects biases in these errors, as might be expected were the code the product of selection. Received: 25 July 1997 / Accepted: 9 January 1998  相似文献   

18.
卢柏松  黄培堂 《遗传学报》1996,23(5):403-408
以同源性在70%以上的6组同源蛋白为材料,从系统发生的角度研究发生在四倍简并位点上的转换和颠换的关系。考虑碱基组成对碱基替换的影响后,转换对颠换的优势在四倍简并位点也存在,但不如线粒体DNA中显著。比较不同转换或颠换之间的关系发现,不同转换或颠换以十分接近的比率发生,A-G转换与C-T转换的比率为0.99:1,各种颠换相对于T-C转换的比率在0.65-0.73之间。进一步讨论了转换对颠换存在优势的原因,推测它可能与体内存在的诱变剂有关。  相似文献   

19.
The Escherichia coli mismatch repair system does not recognize and/or repair all mismatched base pairs with equal efficiency: whereas transition mismatches (G X T and A X C) are well repaired, the repair of some transversion mismatches (e.g. A X G or C X T) appears to depend on their position in heteroduplex DNA of phage lambda. Undecamers were synthesized and annealed to form heteroduplexes with a single base-pair mismatch in the centre and with the five base pairs flanking each side corresponding to either repaired or unrepaired heteroduplexes of lambda DNA. Nuclear magnetic resonance (n.m.r.) studies show that a G X A mismatch gives rise to an equilibrium between fully helical and a looped-out structure. In the unrepaired G X A mismatch duplex the latter predominates, while the helical structure is predominant in the case of repaired G X A and G X T mismatches. It appears that the E. coli mismatch repair enzymes recognize and repair intrahelical mismatched bases, but not the extrahelical bases in the looped-out structures.  相似文献   

20.
Analyses of complete cytochrome b sequences from all species of cranes (Aves: Gruidae) reveal aspects of sequence evolution in the early stages of divergence. These DNA sequences are > or = 89% identical, but expected departures from random substitution are evident. Silent, third- position pyrimidine transitions are the dominant substitution type, with transversion comprising only a small fraction of sequence differences. Substitution patterns are not clearly manifested until divergence has reached a moderate level (> 3%), as expected for a stochastic process. Variation in the frequency of mismatch types among lineages decreases at larger divergences, but the level of bias does not decay. Divergence varies up to fivefold among gene regions but is not correlated with structural domain. All protein structural domains except extramembrane 4 display < 20% variable residues. Regions corresponding to putative functional domains show the excepted conservation of amino acids, although the C-terminal portion of the Q0 reaction center displays several nonconservative replacements. Phylogenetic analyses incorporating substitution asymmetries produced mixed results. Distances estimated with multiple parameters (transition, codon-position, composition, and pyrimidine-transition biases) yielded identical additive tree topologies with comparable bootstrap values, all consistent with uncontroversial species relationships. Maximum likelihood analysis incorporating these biases, as well as equally weighted parsimony analysis, produced similar results. Static, differential weighting for parsimony did not improve the phylogenetic signal but produced unusual trees with low bootstraps. The overall rate of nucleotide substitution varies slightly but significantly among cranes, and calibration of distances against fossil dates suggests divergence rates of 0.7%-1.7% per million years.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号