首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TIA-1-interacting protein Fas-activated serine/threonine phosphoprotein (FAST) is a component of a signaling cascade that is initiated by ligation of the Fas receptor. Immunofluorescence microscopy using affinity-purified antibodies raised against recombinant FAST reveals that the endogenous protein associates with mitochondria. Subcellular fractionation confirms that FAST is a component of mitochondria. FAST is tethered to mitochondria by a lysine/arginine-rich domain at its carboxyl terminus that is structurally similar to the mitochondrial tethering motifs of monoamine oxidase B and cytochrome b5. At the mitochondrial membrane, FAST interacts with BCL-X(L). The BCL-X(L) binding domain maps to a BCL-2-homology-3 (BH3)-related domain that is distinct from the mitochondrial-tethering domain (MTD). Although interactions between FAST and BCL-X(L) require both the BH3-related domain and the MTD, the requirement for mitochondrial tethering can be conferred by a heterologous MTD. Our results suggest that FAST-BCL-X(L) interactions are likely to regulate mitochondrial metabolism during Fas-induced apoptosis.  相似文献   

2.
BAX is a multidomain proapoptotic BCL-2 family protein that resides in the cytosol until activated by an incompletely understood trigger mechanism, which facilitates BAX translocation to mitochondria and downstream death events. Whether BAX is activated by direct contact with select BH3-only members of the BCL-2 family is highly debated. Here we detect and quantify a direct binding interaction between BAX and a hydrocarbon-stapled BID BH3 domain, which triggers the functional activation of BAX at nanomolar doses in vitro. Chemical reinforcement of BID BH3 alpha helicity was required to reveal the direct BID BH3-BAX association. We confirm the specificity of this BH3 interaction by characterizing a stapled BAD BH3 peptide that interacts with antiapoptotic BCL-X(L) but does not bind or activate BAX. We further demonstrate that membrane targeting of stapled BID BH3 optimizes its ability to activate BAX, supporting a model in which BID directly engages BAX to trigger mitochondrial apoptosis.  相似文献   

3.
Ku B  Liang C  Jung JU  Oh BH 《Cell research》2011,21(4):627-641
Interactions between the BCL-2 family proteins determine the cell's fate to live or die. How they interact with each other to regulate apoptosis remains as an unsettled central issue. So far, the antiapoptotic BCL-2 proteins are thought to interact with BAX weakly, but the physiological significance of this interaction has been vague. Herein, we show that recombinant BCL-2 and BCL-w interact potently with a BCL-2 homology (BH) 3 domain-containing peptide derived from BAX, exhibiting the dissociation constants of 15 and 23 nM, respectively. To clarify the basis for this strong interaction, we determined the three-dimensional structure of a complex of BCL-2 with a BAX peptide spanning its BH3 domain. It revealed that their interactions extended beyond the canonical BH3 domain and involved three nonconserved charged residues of BAX. A novel BAX variant, containing the alanine substitution of these three residues, had greatly impaired affinity for BCL-2 and BCL-w, but was otherwise indistinguishable from wild-type BAX. Critically, the apoptotic activity of the BAX variant could not be restrained by BCL-2 and BCL-w, pointing that the observed tight interactions are critical for regulating BAX activation. We also comprehensively quantified the binding affinities between the three BCL-2 subfamily proteins. Collectively, the data show that due to the high affinity of BAX for BCL-2, BCL-w and A1, and of BAK for BCL-X(L), MCL-1 and A1, only a subset of BH3-only proteins, commonly including BIM, BID and PUMA, could be expected to free BAX or BAK from the antiapoptotic BCL-2 proteins to elicit apoptosis.  相似文献   

4.
The BCL-2 family includes both pro- and anti-apoptotic proteins, which regulate programmed cell death during development and in response to various apoptotic stimuli. The BH3-only subgroup of pro-apoptotic BCL-2 family members is critical for the induction of apoptotic signaling, by binding to and neutralizing anti-apoptotic BCL-2 family members. During embryonic development, the anti-apoptotic protein BCL-X(L) plays a critical role in the survival of neuronal populations by regulating the multi-BH domain protein BAX. In this study, the authors investigated the role of Harakiri (HRK), a relatively recently characterized BH3-only molecule in disrupting the BAX-BCL-X(L) interaction during nervous system development. Results indicate that HRK deficiency significantly reduces programmed cell death in the nervous system. However, HRK deficiency does not significantly attenuate the widespread apoptosis seen in the Bcl-x (-/-) embryonic nervous system, indicating that other BH3-only molecules, alone or in combination, may regulate BAX activation in immature neurons.  相似文献   

5.
BIM and tBID are two BCL-2 homology 3 (BH3)-only proteins with a particularly strong capacity to trigger BAX-driven mitochondrial outer membrane permeabilization, a crucial event in mammalian apoptosis. However, the means whereby BIM and tBID fulfill this task is controversial. Here, we used a reconstituted liposomal system bearing physiological relevance to explore systematically how the BAX-permeabilizing function is influenced by interactions of BIM/BID-derived proteins and BH3 motifs with multidomain BCL-2 family members and with membrane lipids. We found that nanomolar dosing of BIM proteins sufficed to reverse completely the inhibition of BAX permeabilizing activity exerted by all antiapoptotic proteins tested (BCL-2, BCL-X(L), BCL-W, MCL-1, and A1). This effect was reproducible by a peptide representing the BH3 motif of BIM, whereas an equivalent BID BH3 peptide was less potent and more selective, reversing antiapoptotic inhibition. On the other hand, in the absence of BCL-2-type proteins, BIM proteins and the BIM BH3 peptide were inefficient, directly triggering the BAX-permeabilizing function. In contrast, tBID alone potently assisted BAX to permeabilize membranes at least in part by producing a structural distortion in the lipid bilayer via BH3-independent interaction of tBID with cardiolipin. Together, these results support the notion that BIM and tBID follow different strategies to trigger BAX-driven mitochondrial outer membrane permeabilization with strong potency.  相似文献   

6.
Antiapoptotic protein Bcl-x(L) has been demonstrated to play a very important role in a variety of diseases such as cancer. Its biological function can be inhibited by proapoptotic proteins such Bak, Bad, and Bax by forming complexes mediated primarily by the Bcl-2 homology 3 (BH3) domain. To facilitate drug discovery for Bcl-x(L) inhibitors, we have developed and optimized a fluorescence polarization assay based on the interaction between Bcl-x(L) and BH3 domain peptides. We observed that the fluorescein-labeled Bad BH3 peptide [NLWAAQRYGRELRRMSDK(fluorescein)FVD or fluorescent Bad peptide] generates best overall results. Fluorescent Bad peptide interacts strongly with Bcl-x(L) with a K(d) of 21.48nM. The assay is stable over a 24-h period and can tolerate the presence of dimethyl sulfoxide up to 8%. By using a competition assay, several peptides derived from the BH3 region of Bak, Bad, Bax, and Bcl-2 were investigated. Bad and Bak BH3 peptides compete efficiently with IC(50) values of 0.048 and 1.14 microM, respectively, while the peptides from the BH3 region of Bcl-2 and Bax compete weakly. A mutated Bak peptide, which has been shown to be inactive for binding to Bcl-x(L), did not compete. The relative binding order of the peptides (Bad>Bak>Bcl-2>Bax>mutated Bak) correlates well with previously published results. When tested in high-throughput formats, the assay has a signal-to-noise ratio of 15.37 and a Z(') factor of at least 0.73. The plate-to-plate variability for free peptide control and bound peptide control is minimal. This validates the assay not only for investigating the nature of Bcl-x(L)-peptide interaction, but also for high-throughput screening of Bcl-x(L) inhibitors.  相似文献   

7.
Apoptosis is an important part of the host's defense mechanism for eliminating invading pathogens. Some viruses express proteins homologous in sequence and function to mammalian pro-survival Bcl-2 proteins. Anti-apoptotic F1L expressed by vaccinia virus is essential for survival of infected cells, but it bears no discernable sequence homology to proteins other than its immediate orthologues in related pox viruses. Here we report that the crystal structure of F1L reveals a Bcl-2-like fold with an unusual N-terminal extension. The protein forms a novel domain-swapped dimer in which the alpha1 helix is the exchanged domain. Binding studies reveal an atypical BH3-binding profile, with sub-micromolar affinity only for the BH3 peptide of pro-apoptotic Bim and low micromolar affinity for the BH3 peptides of Bak and Bax. This binding interaction is sensitive to F1L mutations within the predicted canonical BH3-binding groove, suggesting parallels between how vaccinia virus F1L and myxoma virus M11L bind BH3 domains. Structural comparison of F1L with other Bcl-2 family members reveals a novel sequence signature that redefines the BH4 domain as a structural motif present in both pro- and anti-apoptotic Bcl-2 members, including viral Bcl-2-like proteins.  相似文献   

8.
The interchain (13)C-(19)F dipolar coupling measured in a rotational-echo double-resonance (REDOR) experiment performed on mixtures of differently labeled KIAGKIA-KIAGKIA-KIAGKIA (K3) peptides (one specifically (13)C labeled, and the other specifically (19)F labeled) in multilamellar vesicles of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1) shows that K3 forms close-packed clusters, primarily dimers, in bilayers at a lipid/peptide molar ratio (L/P) of 20. Dipolar coupling to additional peptides is weaker than that within the dimers, consistent with aggregates of monomers and dimers. Analysis of the sideband dephasing rates indicates a preferred orientation between the peptide chains of the dimers. The combination of the distance and orientation information from REDOR is consistent with a parallel (N-N) dimer structure in which two K3 helices intersect at a cross-angle of approximately 20 degrees. Static (19)F NMR experiments performed on K3 in oriented lipid bilayers show that between L/P = 200 and L/P = 20, K3 chains change their absolute orientation with respect to the membrane normal. This result suggests that the K3 dimers detected by REDOR at L/P = 20 are not on the surface of the bilayer but are in a membrane pore.  相似文献   

9.
Anti-apoptotic Bcl-2-family proteins (Bcl-2, Bcl-x(L), Bfl-1, Mcl-1, Bcl-W and Bcl-B) have been recently validated as drug discovery targets for cancer, owed to their ability to confer tumor resistance to chemotherapy or radiation. The anti-apoptotic activity of Bcl-2 proteins is due to their ability to heterodimerize with their pro-apoptotic counterparts (proteins such as Bad, Bim or Bid) via a conserved peptide region termed BH3. Thus, molecules that mimic pro-apoptotic BH3 domains represent a direct approach to overcoming the protective effects of anti-apoptotic proteins such as Bcl-2 and Bcl-x(L). Here, we report on the development and evaluation of two novel Lanthanide-based assays that are formatted for high-throughput screening of small molecules capable of antagonizing BH3-Bcl-2 interactions. The assay conditions, robustness and reproducibility (Z' factors) are described. These assays represent useful tools to enable further studies in the search for novel, safe and effective anti-cancer agents targeting Bcl-2-family proteins.  相似文献   

10.
Shangary S  Johnson DE 《Biochemistry》2002,41(30):9485-9495
Overexpression of Bcl-2, an anti-apoptotic oncoprotein, is commonly observed in a variety of human malignancies and is associated with resistance to chemotherapy and radiotherapy. Although the precise mechanism of Bcl-2 action remains elusive, current evidence indicates that Bcl-2 inhibits apoptosis by binding and inhibiting pro-apoptotic molecules such as Bax. Therefore, agents that disrupt the ability of Bcl-2, or other anti-apoptotic molecules, to bind to pro-apoptotic molecules may have therapeutic value. Several studies have shown that the BH3 domains of Bcl-2 and Bax are critically important for Bax/Bcl-2 heterodimerization. In this report, we designed and synthesized peptides based on the BH3 domains of three distinct Bcl-2 family members, Bcl-2, Bax and Bad. In vitro interaction assays were used to compare the abilities of the different peptides to inhibit Bax/Bcl-2 and Bax/Bcl-x(L) heterodimerization, as well as Bcl-2 and Bax homodimerization. Bax BH3 peptide (20-amino acids) potently inhibited both Bax/Bcl-2 and Bax/Bcl-x(L) interactions, exhibiting IC(50) values of 15 and 9.5 microM, respectively. The Bad BH3 peptide (21 amino acids) was slightly more potent than Bax BH3 at inhibiting Bax/Bcl-x(L) but failed to disrupt Bax/Bcl-2. Bcl-2 BH3 peptide (20-amino acids) was inactive toward Bax/Bcl-2 and had only a weak inhibitory effect on Bax/Bcl-x(L) heterodimerization. All three BH3 peptides failed to significantly inhibit homodimerization of Bcl-2 or Bax. Consistent with its ability to disrupt Bax/Bcl-2 heterodimerization, Bax BH3 peptide was able to overcome Bcl-2 overexpression and induce cytochrome c release from mitochondria of Bcl-2-overexpressing Jurkat T leukemic cells. Bad BH3 peptide, while potently inducing cytochrome c release in wild-type Jurkat cells, only partially overcame the effects of Bcl-2 overexpression. Bcl-2 BH3 failed to induce cytochrome c release, even in wild-type cells. Delivery of the Bax BH3 and Bad BH3 peptides into wild-type Jurkat cells induced comparable levels of cell death. In cells overexpressing Bcl-2, the potency of Bax BH3 peptide was similar to that seen in wild-type cells, while the efficacy of Bad BH3 peptide was reduced. By contrast, in Bcl-x(L)-overexpressing cells, Bad BH3 exhibited greater cell-killing activity than Bax BH3. The Bcl-2 BH3 peptide and a mutant Bax BH3 peptide had no appreciable effect on Jurkat cells. Together, our data suggest that agents based on the Bax BH3 domain may have therapeutic value in cancers overexpressing Bcl-2, while agents based on the BH3 domain of Bad may be more useful for tumors overexpressing Bcl-x(L).  相似文献   

11.
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.  相似文献   

12.
BH3 mimetics are small molecules designed or discovered to mimic the binding of BH3-only proteins to the hydrophobic groove of antiapoptotic BCL2 proteins. The selectivity of these molecules for BCL2, BCL-X(L), or MCL1 has been established in vitro; whether they inhibit these proteins in cells has not been rigorously investigated. In this study, we used a panel of leukemia cell lines to assess the ability of seven putative BH3 mimetics to inhibit antiapoptotic proteins in a cell-based system. We show that ABT-737 is the only BH3 mimetic that inhibits BCL2 as assessed by displacement of BAD and BIM from BCL2. The other six BH3 mimetics activate the endoplasmic reticulum stress response inducing ATF4, ATF3, and NOXA, which can then bind to and inhibit MCL1. In most cancer cells, inhibition of one antiapoptotic protein does not acutely induce apoptosis. However, by combining two BH3 mimetics, one that inhibits BCL2 and one that induces NOXA, apoptosis is induced within 6 h in a BAX/BAK-dependent manner. Because MCL1 is a major mechanism of resistance to ABT-737, these results suggest a novel strategy to overcome this resistance. Our findings highlight a novel signaling pathway through which many BH3 mimetics inhibit MCL1 and suggest the potential use of these agents as adjuvants in combination with various chemotherapy strategies.  相似文献   

13.
The crystal structure of cyclo(L-Pro-Gly)3 was solved using X-ray crystallographic techniques. The backbone of the peptide is asymmetric and is made up of five trans peptide units and one cis peptide. There is a hydrogen bonded water bridge that links the carbonyl oxygens, O1 and O4. The molecules exist as dimers in the crystal lattice. The two molecules of the dimer are related by crystallographic twofold symmetry and are linked by two N-H ... O hydrogen bonds. The crystals are trigonal, space group P3(2)12 with a = 11.379(3), c = 32.93(1) and z = 6. The structure was solved by multisolution methods and refined by least squares technique to an R of 0.083.  相似文献   

14.
Muskett FW  May FE  Westley BR  Feeney J 《Biochemistry》2003,42(51):15139-15147
The trefoil protein TFF3 forms a homodimer (via a disulfide linkage) that is thought to have increased biological activity over the monomer. The solution structure of the TFF3 dimer has been determined by NMR and compared with the structure of the TFF3 monomer and with other trefoil dimer structures (TFF1 and TFF2). The most significant structural differences between the trefoil domain in the monomer and dimer TFF3 are in the orientations of the N-terminal 3(10)-helix (residues 10-12) and in the presence in the dimer of an additional 3(10)-helix (residues 53-55) outside of the core region. The TFF3 dimer forms a more compact structure as compared with the TFF1 dimer where the two trefoil domains are connected by a flexible region with the monomer units being at variable distances from each other and in many different orientations. Although TFF2 is also a compact structure, the dispositions of its monomer units are very different from those of TFF3. The structural differences between the dimers result in the two putative receptor/ligand binding sites that remain solvent exposed in the dimeric structures having very different dispositions in the different dimers. Such differences have significant implications for the mechanism of action and functional specificity for the TFF class of proteins.  相似文献   

15.
Bcl-2 family proteins are key regulators of apoptosis and have recently been shown to modulate autophagy. The tumor suppressor Beclin 1 has been proposed to coordinate both apoptosis and autophagy through direct interaction with anti-apoptotic family members Bcl-2 and/or Bcl-X(L). However, the molecular basis for this interaction remains enigmatic. Here we report that Beclin 1 contains a conserved BH3 domain, which is both necessary and sufficient for its interaction with Bcl-X(L). We also report the crystal structure of a Beclin BH3 peptide in complex with Bcl-X(L) at 2.5A resolution. Reminiscent of previously determined Bcl-X(L)-BH3 structures, the amphipathic BH3 helix of Beclin 1 bound to a conserved hydrophobic groove of Bcl-X(L). These results define Beclin 1 as a novel BH3-only protein, implying that Beclin 1 may have a direct role in initiating apoptotic signaling. We propose that this putative apoptotic function may be linked to the ability of Beclin 1 to suppress tumor formation in mammals.  相似文献   

16.
The structure of calbindin D(9k) with two substitutions was determined by X-ray crystallography at 1.8-A resolution. Unlike wild-type calbindin D(9k), which is a monomeric protein with two EF-hands, the structure of the mutated calbindin D(9k) reveals an intertwined dimer. In the dimer, two EF-hands of the monomers have exchanged places, and thus a 3D domain-swapped dimer has been formed. EF-hand I of molecule A is packed toward EF-hand II of molecule B and vice versa. The formation of a hydrophobic cluster, in a region linking the EF-hands, promotes the conversion of monomers to 3D domain-swapped dimers. We propose a mechanism by which domain swapping takes place via the apo form of calbindin D(9k). Once formed, the calbindin D(9k) dimers are remarkably stable, as with even larger misfolded aggregates like amyloids. Thus calbindin D(9k) dimers cannot be converted to monomers by dilution. However, heating can be used for conversion, indicating high energy barriers separating monomers from dimers.  相似文献   

17.
Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation. 1), We use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations; and 2), we employ all-atom molecular mechanics simulations to estimate thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts 10 different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that 1), dimer conformations have higher free energies compared to their corresponding monomeric states; and 2), the free-energy difference between the Abeta(1-42) and the corresponding Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of thermodynamically stable planar beta-strand dimers.  相似文献   

18.
Critical issues in apoptosis include the importance of caspases versus organelle dysfunction, dominance of anti- versus proapoptotic BCL-2 members, and whether commitment occurs upstream or downstream of mitochondria. Here, we show cells deficient for the downstream effectors Apaf-1, Caspase-9, or Caspase-3 display only transient protection from "BH3 domain-only" molecules and die a caspase-independent death by mitochondrial dysfunction. Cells with an upstream defect, lacking "multidomain" BAX, BAK demonstrate long-term resistance to all BH3 domain-only members, including BAD, BIM, and NOXA. Comparison of wild-type versus mutant BCL-2, BCL-X(L) indicates these antiapoptotics sequester BH3 domain-only molecules in stable mitochondrial complexes, preventing the activation of BAX, BAK. Thus, in mammals, BH3 domain-only molecules activate multidomain proapoptotic members to trigger a mitochondrial pathway, which both releases cytochrome c to activate caspases and initiates caspase-independent mitochondrial dysfunction.  相似文献   

19.
We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.  相似文献   

20.
Alanine scanning has been widely employed as a method of identifying side chains that play important roles in protein-protein and protein-peptide interactions. Here we show how an analogous and complementary technique, hydrophile scanning, can provide additional insight on such interactions. Mutation of a wild-type residue to alanine removes most of the side-chain atoms, and the effect of this removal is typically interpreted to indicate contribution of the deleted side chain to the stability of the complex. Hydrophile scanning involves systematic mutation of wild-type residues to a cationic or anionic residue (lysine or glutamic acid, in this case). We find that the results of these mutations provide insights on interactions between polypeptide surfaces that are complementary to the information obtained via alanine scanning. We have applied this technique to a peptide that corresponds to the BH3 domain of the pro-apoptotic protein Bim. The wild-type Bim BH3 domain binds strongly to the anti-apoptotic proteins Bcl-x(L) and Mcl-1. Combining information from the alanine, lysine, and glutamic acid scans has enabled us to identify Bim BH3 domain mutants containing only two or three sequence changes that bind very selectively either to Bcl-x(L) or Mcl-1. Our findings suggest that hydrophile scanning may prove to be a broadly useful tool for revealing sources of protein-protein recognition and for engineering selectivity into natural sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号