首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

2.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

3.
Locomotor activity of the surface-dwelling millipede Syngalobolus sp. was recorded under laboratory conditions. Infra-red diodes were used to detect the locomotor activity in an oval shaped chamber, which was connected with an event recorder. The results of 11 individuals showed that the millipedes entrained to light/dark (LD12:12 h) conditions with negative phase angle difference (-83.2 ± 24.72 min). The millipedes showed a clear-cut free-running rhythm with a period (t) of 23.8 ± 1.0 h (n = 9) in constant darkness (DD). The period in continuous light (LL) was relatively greater (25.2 ± 0.1 h; n = 3) than that in DD.  相似文献   

4.
Patterns of activity and inactivity were experimentally measured for two shallow-water octopuses, Octopus laqueus (n = 8) and Abdopus aculeatus (n = 4), inhabiting the Ryukyu Archipelago. Octopuses that were collected from the coastal waters of Okinawa Island were held in experimental tanks under controlled light conditions (L, light; D, dark; 12L:12D, LD conditions; 12D:12D, DD conditions). Behaviors of these two species were continuously recorded for 9 to 10 days. Under LD conditions, O. laqueus were active for 7 to 14 min during daytime and 298 to 339 min at night, and under DD conditions, for 97 to 140 min during daytime and 71 to 169 min at night. A. aculeatus were active for 49 to 99 min during daytime and 138 to 185 min at night under LD conditions, whereas under DD conditions, they were active for 36 to 56 min during daytime and 55 to 154 min at night. Continuous duration for activity cycles was 39 ± 7.6 h under LD conditions and 42 ± 2.6 h under DD conditions in O. laqueus, and 38 ± 7.4 h under LD conditions and 42 ± 2.8 h under DD conditions in A. aculeatus. Ratios for active duration to inactive duration did not differ between LD condition and DD condition both in O. laqueus and A. aculeatus.  相似文献   

5.
The locomotor activity rhythm of the isopod, Porcellio olivieri, was investigated in Gannouch site in the south of Tunisia. The rhythm was monitored under constant temperature in individual animals in winter under two simultaneous regimens: the light–dark (LD) cycle and the continuous darkness (DD). Results revealed that whatever regimens, actograms, and mean activity curves showed that specimens of P. olivieri concentrated their activity during the experimental and subjective night. The species exhibited a locomotor rhythm period significantly shorter under LD (T = 23h13 ± 0h44) than DD (τ = 24h28 ± 0h58). However, the locomotor activity rhythm was less stable and the individuals were significantly more active under entraining conditions than constant darkness. The activity pattern of this species will be discussed as an adaptative strategy to respond to environmental conditions.  相似文献   

6.
《Chronobiology international》2013,30(4-5):539-552
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10 h (T20), 12:12 h (T24), and 14:14 h (T28). The mean (±95% confidence interval; CI) free-running period (τ) of the oviposition rhythm was 26.34 ± 1.04 h and 24.50 ± 1.77 h in DD and LL, respectively. The eclosion rhythm showed a τ of 23.33 ± 0.63 h (mean ± 95% CI) in DD, and eclosion was not rhythmic in LL. The τ of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the τ and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

7.
Mangrove crickets have a circatidal activity rhythm (~12.6 h cycles) with a circadian modulation under constant darkness (DD), whereby activity levels are higher during subjective night low tides than subjective day low tides. This study explored the locomotor activity rhythm of mangrove crickets under constant light (LL). Under LL, the crickets also exhibited a clear circatidal activity rhythm with a free-running period of 12.6 ± 0.26 h (mean ± SD, n = 6), which was not significantly different from that observed under DD. In contrast, activity levels were almost the same between subjective day and night, unlike those under DD, which were greater during subjective night. The loss of circadian modulation under LL may be explained by the suspension of the circadian clock in these conditions. These results strongly suggest that the circatidal activity rhythm is driven by its own clock system, distinct from the circadian clock.  相似文献   

8.
Specimens of the fiddler crab Uca subcylindrica (Stimpson) were captured in south Texas (USA) for locomotor rhythm studies. Actographic data were analyzed using Tau? sofware. Under constant illumination (LL) and darkness (DD), the semiterrestrial crabs express a circadian rhythm of locomotion. When exposed to illumination/darkness cycles (LD12:12 or LD14:10), their bouts of activity are entrained to the photoperiod. In LD, activity is generally bimodal with an initial burst about 0.5 h after illumination. A second burst of activity begins 1 to 2 h before the end of illumination. When transferred from LD to LL, a locomotor rhythm with an average period of 24.6 ± 1.0 h (n = 19) is expressed in 89 percent of the crabs. On the other hand, when placed in DD after LD (n = 8), the crabs are either arrythmic or weakly rhythmic (period = 23.8 ± 0.2 h; n = 2). If the onset of illumination is advanced by 6 h, a period of less than 24.0 h is detected in the actogram. If the onset of illumination is delayed by 6 h, a locomotor rhythm with a period greater than 24.0 h appears. The locomotor behavior of this species of fiddler crab, Uca subcylindrica, is not related to the tidal rhythmicities seen in other members of the genus Uca. Rather, it has strong circadian components.  相似文献   

9.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6–9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6–9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

10.
Animals of the amphipod Orchestia montagui are kept in constant darkness with two short light pulses. One pulse is applied at the beginning of subjective night (around the dusk) and the other one at the end of subjective night (around the dawn). The pulse duration is estimated in the order of one or two hours around the dusk as well as the dawn. The locomotor activity rhythm was monitored in individual animals in summer under constant temperature. Results revealed that whatever the experimental conditions, under continuous or interrupted darkness by pulses, two endogenous components have been highlighted. In fact, Periodogram analysis showed the presence of ultradian and circadian periods around 12 and 24 h, respectively. The shortest circadian period and the most important inter-individual variability was observed under pulse of 2 h around the dusk with mean value equal to τDD+pulse = 24h38′ ± 4h34′. The activity profiles are in majority unimodal. Moreover, the most activity peak showed a slipping of its location from the middle of subjective night under constant darkness to the middle of subjective day under pulse. Globally, the locomotor activity rhythm of O. montagui was better defined under pulses and specimens were significantly more active under continuous darkness. Moreover, a great variability around the activity time was observed especially with pulse of 1 h.  相似文献   

11.
In the Karakum Desert (Turkmenistan) the beetles Trigonoscelis gigas are only active in the morning and evening while T. sublaevicollis are strictly nocturnal, regardless of the season and weather. The daily activity rhythm of T. gigas and T. sublaevicollis was studied in the laboratory according to the following pattern: 5 days under a light-darkness cycle of 15: 9 h (LD 15: 9), then 10 days in constant darkness (DD), and then 10 more days under alternating 1-h pulses of light and darkness (LD 1: 1). The temperature was 25°C in all the modes. At LD 15: 9, beetles of both species maintained a 24-h period and a natural pattern of the activity rhythm. In DD, the circadian rhythm ran with a period of 23.5 ± 0.3 h (n = 40) in T. gigas and 23.6 ± 0.4 h (n = 40) in T. sublaevicollis. At DD, the morning and evening activity peaks of T. gigas merged to form a rhythm with only one peak. Under LD 1: 1, both T. gigas and T. sublaevicollis recovered a 24-h period of the rhythm, while the rhythm of T. gigas regained the two-peak structure. Our research confirmed the assumption of Tshernyshev (1980) about the 24-h period of the free-running endogenous rhythm and the distorting effect of constant conditions on this rhythm.  相似文献   

12.
The entrainment behaviour of the circadian rhythm of locomotor activity in the field mouse Mus booduga was studied in order to evaluate the role of the animals' free-running period (τ) and the duration of skeleton photoperiods in determining entrainment of animals with τ values beyond and close to the “limits of entrainment”. We predicted that animals with τ lesser than the lower “limit of entrainment” would entrain only to short skeleton photoperiods (≤ 6 h) and not to longer skeleton photoperiods. Experimental animals (n = 25) were entrained to light/dark (LD) 12:12 h schedule, and then subjected to various skeleton photoperiods in which the duration of one of the two intervals of darkness was successively reduced while holding the zeitgeber period (T) constant. Some animals (n = 9) entrained to long as well as short photoperiods, whereas others (n = 5) entrained only to extremely short skeleton photoperiods of 6 h or less. The mean τ of the animals entraining to all photoperiods (23.78 ± 0.22 h) was significantly greater than that of the animals that entrained only to very short skeleton photoperiods (22.43 ± 0.41 h) (t df 12 = 5.3, p < 0.001). We also selected a few animals (n = 11) with average τ value of 23.13 ± 0.38 h and studied them under several skeleton photoperiods. To our surprise the animals which were subjected to restricted dark intervals invariably underwent “phase-jump” assuming the longer dark interval as “subjective night”. We suggest that the observed variation in entrainment behaviour might be due to the variation seen among individual animals in τ and the shape of their PRC. These results support the view that the duration of the skeleton photoperiod and the τ of an individual animal interact to determine its entrainment, and underscore the relevance of inter-individual variation in circadian organisation to studies of circadian rhythms.  相似文献   

13.
Summary Locomotor activity of the river lamprey, Lampetra japonica, was investigated under a light-dark (LD 1212) cycle and under continuous dark conditions. Intact lampreys were entrained to the light:dark cycle. They were active mainly in the early half of the dark period and inactive in light period. The light:dark entrainment continued in 72.7% of lampreys after the removal of bilateral eyes, but additional pinealectomy made the entrainment disappear in all lampreys. When lampreys were pinealectomized with their eyes intact, light: dark entrainment was abolished in most cases. The results indicate that the pineal organ of the lamprey is a photoreceptive organ responsible for synchronizing locomotor activity to LD cycle. Under continuous dark conditions, the locomotor activity began to free-run with a period of 21.3 ± 0.9 h (mean ± SD, n = 53). This circadian rhythmicity was not affected by the removal of lateral eyes but was abolished by pinealectomy. The pineal organ appears to function as an oscillator, or as one of the oscillators, for the circadian locomotor rhythm of lampreys.Abbreviations DD continuous dark - LD light:dark  相似文献   

14.
An inbred lineage of Ph. sungorus was established at our institute showing some unusual characteristics of the circadian system that appear incompatible with an adequate adaptation to the periodic environment. We identified a hamster for which activity onset was delayed under light‐dark conditions (L:D=14∶10 h) by about 4 h in relation to the light‐dark transition. As the activity offset remained synchronized with the time of light‐on, the activity period (α) became compressed to 6 h. By means of a special breeding program, the percentage of animals showing such a phenomenon increased, indicating that it has a genetic component. Also, it is possible now to breed a larger number of hamsters to further investigate the rhythm deviations and the underlying mechanisms. Activity rhythms were investigated using passive infrared motion sensors. Whereas some of the hamsters showed a rather stable phase delay of activity onset relative to the onset of darkness, some animals progressively delayed their activity onset up to a critical, minimal length of α (3.03±0.02 h). Thereafter, the rest‐activity rhythm started to free‐run with a remarkably long period (τ=25.02 h) or became arrhythmic. Some hamsters showed several consecutive cycles alternating between a free‐running rhythm and entrainment, with increasing τ and reducing the phases of temporary entrainment. Finally, these hamsters became arrhythmic. The total amount of activity per day was similar in the wild type and delayed activity onset hamsters. The latter did increase the intensity of activity, thereby compensating for the shorter α. The period length in constant darkness was significantly longer in the delayed hamsters compared to wild type animals (24.37±0.03 h vs. 24.24±0.02 h; p<0.001). However, this difference seems too small to cause the later activity onset. The phase response following a light pulse (100 lux, 15′ at CT14 where CT12=activity onset) was similar in delayed and wild type hamsters (?1.66±0.12 h and ?1.82±0.16 h). As access to running wheels is known to influence the circadian pacemaker, particularly to strengthen oscillator coupling, a set of further experiments was conducted. The free‐running period was significantly shorter when the hamsters were provided with running wheels (24.25±0.04 h and 24.07±0.04 h in wild type and delayed hamsters, respectively; p<0.005 and p<0.05). However, the effect on the activity onset was not unequivocal. In many hamsters it was still delayed, whereas in others the unlocking of the wheels led to an expansion of α. The described inbred lineage appears to be an excellent model to further investigate the properties and the interaction of the two oscillators underlying the daily activity pattern.  相似文献   

15.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

16.
Under controlled laboratory conditions, the locomotor activity rhythms of four species of wrasses (Suezichthys gracilis, Thalassoma cupido, Labroides dimidiatus andCirrhilabrus temminckii) were individually examined using an actograph with infra-red photo-electric switches in a dark room at temperatures of 21.3–24.3°C, for 7 to 14 days. The locomotor activity ofS. gracilis occurred mostly during the light period under a light-dark cycle regimen (LD 12:12; 06:00-18:00 light, 18:00-06:00 dark). The locomotor activity commenced at the beginning of the light period and continued until a little before the beginning of dark period. The diel activity rhythm of this species synchronizes with LD. Under constant illumination (LL) this species shows distinct free-running activity rhythms varying in length from 23 hrs. 39 min. to 23 hrs. 47 min. Therefore,S. gracilis appears to have a circadian rhythm under LL. However, in constant darkness (DD), the activity of this species was greatly suppressed. All the fish showed no activity rhythms in DD conditions. After DD, the fish showed the diel activity rhythm with the resumption of LD, but this activity began shortly after the beginning of light period. The fish required several days to synchronize with the activity in the light period. Therefore,S. gracilis appeared to continue the circadian rhythm under DD. InT. cupido, the locomotor activity commenced somewhat earlier than the beginning of the light period and continued until the beginning of the dark period under LD. The diel activity rhythm of this species synchronizes with LD. Under LL, four of the five specimens of this species tested showed free-running activity rhythms for the first 5 days or longer varying in length from 22 hrs. 54 min. to 23 hrs. 39 min. Although the activity of this species was suppressed under DD, two of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 38 min. to 23 hrs. 50 min. under DD. Therefore, it was ascertained thatT. cupido has a circadian rhythm. InL. dimidiatus, the locomotor activity rhythm under LD resembled that observed inT. cupido. The diel activity rhythm of this species synchronizes with LD. Under LL, four of seven of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 07 min. to 25 hrs. 48 min. Although the activity of this species was suppressed under DD, three of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 36 min. to 23 hrs. 41 min. under DD. Therefore, it was ascertained thatL. dimidiatus has a circadian rhythm. Almost all locomotor activity of C.temminckii occurred during the light period under LD. The diel activity rhythm of this species coincides with LD. Under LL, two of four of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 32 min. to 23 hrs. 45 min. Although the activity of this species was suppressed under DD, one of the four fish showed free-running activity rhythms throughout the experimental period. The length of the free-running period was 23 hrs. 21 min. under DD. Therefore,C. temminckii appeared to have a circadian rhythm. According to field observations,S. gracilis burrows and lies in the sandy bottom whileT. cupido, L. dimidiatus, andC. temminckii hide and rest in spaces among piles of boulders or in crevices of rocks during the night. It seems that the differences in nocturnal behavior among the four species of wrasses mentioned above are closely related to the intensity of endogenous factors in their locomotor activity rhythms.  相似文献   

17.
The golden hamster (Mesocricetus auratus) is one of the most frequently used laboratory animals, particularly in chronobiological studies. One reason is its very robust and predictable rhythms, although the question arises whether this is an inbreeding effect or rather is typical for the species. We compared the daily (circadian) activity rhythms of wild and laboratory golden hamsters. The laboratory hamsters were derived from our own outbred stock (Zoh:GOHA). The wild hamsters included animals captured in Syria and their descendants (F1). Experiments were performed under entrained (light: dark [LD] 14h:10h) and under free-running (constant darkness, DD) conditions. Locomotor activity was recorded using passive infrared detectors. Under entrained conditions, the animals had access to a running wheel for a certain time to induce additional activity. After 3 weeks in constant darkness, a light pulse (15 min, 100 lux) was applied at circadian time 14 (CT14). Both laboratory and wild hamsters showed well-pronounced and very similar activity rhythms. Under entrained conditions, all hamsters manifested about 80% of their total 24h activity during the dark portion of the LD cycle. The robustness of the daily rhythms was also similar. However, interindividual variability was higher in wild hamsters for both measures. All animals used the running wheels almost exclusively during the dark portion of the LD cycle, although the wild hamsters were three times more active. The period length, measured in constant darkness, was significantly shorter in wild (23.93h ± 0.10h) than in laboratory hamsters (24.06 ± 0.07h). The light-induced phase changes were not different (about 1.5h). In summary, these results indicate that the laboratory hamster is not much different from the wild type. (Chronobiology International, 18(6), 921932, 2001)  相似文献   

18.
The effect of stocking density on the locomotor activity of African catfish C. gariepinus under different light regimes was investigated. C. gariepinus were stocked under different densities (1, 5, or 10 fish/tank), and their locomotor activity recorded under light-dark (LD), constant light (LL), constant darkness (DD), and LD-reversed (DL) regimens. Under the LD cycle, catfish showed a crepuscular activity pattern, irrespective of stocking density, with most of the daily activity concentrated around the light-onset and light-offset times. When fish were subjected to DD, all 4 tanks with medium (5 fish) and high (10 fish) stocking densities showed circadian rhythmicity, with an average period (τ) of 23.3?±?0.5 and 24.6?±?0.5?h, respectively. In contrast, only 2 low (1 fish) density tanks showed free-running rhythms. Under LL, activity levels decreased significantly in comparison with levels observed under LD and DD. Moreover, fish of 1, 2, and 3 out of the 4 tanks with low, medium, and high densities, respectively, showed free-running rhythms under these conditions. When the photocycle was reversed (DL), fish of 3, 2, and 4 out of the 4 tanks with low, medium, and high stocking densities, respectively, showed gradual resynchronization to the new phase, and transient cycles of activity were observed. These results suggest that stocking density of fish affected the display of circadian rhythmicity and the intensity of activity levels. Thus, fish kept in higher densities showed more robust rhythmicity and higher levels of daily activity, indicating that social interactions may have an influence on behavioral patterns in the African catfish. (Author correspondence: )  相似文献   

19.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light‐dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free‐running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights‐on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

20.
Summary We examined the effect of cycles of 12 h warm (35 ± 2 °C) and 12 h (21 ± 2 °C) ambient temperature (Ta) upon the circadian activity rhythms of stripe-faced dunnarts, Sminthopsis macroura, free-running in conditions of constant dark (DD) or constant light (LL). It was hypothesized that dunnarts would entrain to the temperature cycles (TaHLs) or show perturbations of period, and that LL would act synergistically with the TaHLs in these effects. Under DD, 2 of 6 animals showed clear entrainment to the TaHLs. Other animals exhibited changes of period () and heavy negative masking of activity during the warm fraction of the TaHLs. Under LL, 3 of 12 animals entrained to the TaHLs. It was concluded that Ta is a significant though weak Zeitgeber for S. macroura compared to light. It is possible that TaHLs entrain homeotherm activity rhythms by altering the rhythm of body temperature, which is usually tightly coupled to activity.Abbreviations TaHL a cycle of Higher and Lower ambient temperature - TaC Constant Ta - Tb body temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号