首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Phylogenetic relationships among 69 species of the Ceramiales (51 Ceramiaceae, six Dasyaceae, seven Delesseriaceae, and five Rhodomelaceae) were determined based on nuclear SSU rDNA sequence data. We resolved five strongly supported but divergent lineages among the included Ceramiaceae: (i) the genus Inkyuleea, which weakly joins other orders of the Rhodymeniophycidae rather than the Ceramiales in our analyses; (ii) the tribe Spyridieae, which is sister to the remainder of the included ceramialean taxa; (iii) the subfamily Ceramioideae, weakly including the tribe Warrenieae; (iv) the subfamily Callithamnioideae; and (v) the subfamily Compsothamnioideae, which emerges as sister to the Dasyaceae/Delesseriaceae/Rhodomelaceae complex, thus rendering the Ceramiaceae sensu lato unequivocally paraphyletic, as has been argued separately on anatomical grounds by Kylin and Hommersand. Our data support a restricted concept of the Ceramiaceae that includes only one of the five lineages (Ceramioideae) that we have resolved. In addition to failing to ally with the Ceramiales in our molecular analyses, species of Inkyuleea differ substantially from other Ceramiaceae sensu lato in details of pre‐ and postfertilization development. The genus Inkyuleea is here assigned to the Inkyuleeaceae fam. nov., which we provisionally retain in the Ceramiales. Species of Spyridia also differ from the remaining Ceramiaceae in their postfertilization development, and, in light of our molecular data, the genus Spyridia is assigned to the Spyridiaceae. The Callithamnioideae is strongly monophyletic (100% in all analyses), which, in combination with key anatomical differences, supports elevation to family status for this lineage as the Callithamniaceae. Similarly, the Compsothamnioideae is solidly monophyletic in our molecular trees and has a unique suite of defining anatomical characters that supports family status for a complex that we consider to include the tribes Compsothamnieae, Dasyphileae, Griffithsieae, Monosporeae, Ptiloteae, Spermothamnieae, Sphondylothamnieae, Spongoclonieae, and Wrangelieae, for which the reinstated family name Wrangeliaceae is available.  相似文献   

2.
Editorial note     
Phylogenetic analyses of the Dasyaceae based on sequence analysis of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and 42 morphological characters are presented. Comparative sequence analysis confirms the general view of the Ceramiaceae as a primitive, paraphyletic group giving rise to the Rhodomelaceae, Delesseriaceae and Dasyaceae within the monophyletic Ceramiales. On the basis of both data sets, the Heterosiphonia-like genera (Heterosiphonia, Colacodasya and Dasyella) are the most primitive members of the Dasyaceae, whereas the Dasya-like genera (Dasya, Pogonophorella, Eupogodon and Rhodoptilum) and Thuretia and Dictyurus are of more recent origin. On the basis of morphological data only, Thuretia and Dictyurus form a sister group to Heterosiphonia, and Eupogodon is monophyletic whereas Dasya and Heterosiphonia are not. Primary radial symmetry has arisen once in the Dasya clade but is secondarily obscured in some species by heavy, asymmetrical cortication that gives the appearance of bilateral symmetry. This is illustrated by species of Eupogodon and Rhodoptilum.  相似文献   

3.
Three species in the red algal order Ceramiales, Dasya longifila Masuda et Uwai (Dasyaceae), Endosiphonia horrida (C. Agardh) P. Silva (Rhodomelaceae) and Laurencia flexilis Setchell (Rhodomelaceae), are reported from Japan for the first time, and their morphological features are described along with taxonomic comments. Our findings point to the northernmost limit of geographic distribution of these species in the north‐western Pacific. Dasya longifila is characterized by small, sparsely corticated axes, long pseudolaterals in which intercalary cell divisions take place, and a small number of tetrasporangial stichidia and spermatangial branches per fertile pseudolateral. Endosiphonia horrida is characterized by frequently anastomosing branches that form a bush‐like tuft without a percurrent axis, inner cortical cells becoming the same length as the axial and periaxial cells, and luxuriously developed, unbranched trichoblasts. Laurencia flexilis is characterized by numerous cartilaginous rigid axes developing from a basal disc without creeping branches, the production of 4 periaxial cells per vegetative segment and the absence of longitudinally oriented secondary pit‐connections between contiguous superficial cortical cells.  相似文献   

4.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

5.
Phylogenetic analyses of rbcL sequence data of representatives of all subfamilies indicate that Simaroubaceae sensu lato is polyphyletic. It represents at least five separate lineages, only three of which (Simarouboideae, Harrisonia, and Kirkioideae) cluster within a robust sapindalean clade. The family is monophyletic only when comprised of members of the subfamily Simarouboideae plus Leitneriaceae, but excluding Harrisonia. Harrisonia is most closely related to Cneorum and Rutaceae. Kirkioideae is distant from Simaroubaceae sensu stricto, although its affinities remain within Sapindales. The other two lineages show an affinity to taxa at some distance from Sapindales: lrvingia with a group of poorly sampled rosid I taxa comprising in part members of Linales and Malphigiales; Picramnia and Alvaradoa cluster together in an isolated position between the broadly comprised groups of rosid I and rosid II. Support for the affinities suggested here is also evident in nonmolecular data sources: wood anatomy, pericarp structure, pollen, and phytochemistry. The elevation of the picramnioid clade, comprising Picramnia and Alvaradoa, to family rank is signaled, and the recognition of Kirkiaceae and Irvingiaceae is substantiated.  相似文献   

6.
Cockroaches are an ecologically and economically important insect group, but some fundamental aspects of their evolutionary history remain unresolved. In particular, there are outstanding questions about some of the deeper relationships among cockroach families. As a group transferred from Blaberoidea Saussure to Blattoidea Latreille, the evolutionary history of the family Anaplectidae Walker requires re-evaluation. In our study, we infer the phylogeny of Blattoidea based on the mitochondrial genomes of 28 outgroup taxa and 67 ingroup taxa, including 25 newly sequenced blattoid species mainly from the families Anaplectidae and Blattidae Latreille. Our results indicate that Blattoidea is the sister group of the remaining Blattodea Brunner von Wattenwyl and that Blattoidea can be divided into three main clades: Blattidae + Tryonicidae McKittrick & Mackerras, Lamproblattidae McKittrick + Anaplectidae and Termitoidae Latreille + Cryptocercidae Handlirsch. Our analyses provide robust support for previously uncertain hypotheses. The sister group of Termitoidae + Cryptocercidae (Xylophagodea Engel) is inferred to constitute the rest of Blattoidea, for the first time. Within Blattidae, Hebardina Bey-Bienko is placed as the sister lineage to the rest of Blattidae. The subfamily Archiblattinae is polyphyletic, Blattinae is paraphyletic and Polyzosteriinae is monophyletic (Macrocercinae Roth not included); the genus Periplaneta Burmrister is polyphyletic. Based on the results of our phylogenetic analyses, we have revised these taxa. A new subfamily, Hebardininae subfam.nov. , is proposed in Blattidae. Archiblattinae and Shelfordella Adelung are synonymized with Blattinae and Periplaneta, respectively: Archiblattinae Kirby syn.nov. and Shelfordella Adelung syn.nov. Our inferred divergence times indicate that Blattoidea emerged in the Late Triassic, with six families in Blattoidea diverging in the Middle and Late Jurassic. We suggest that the divergences among lineages of Asian Blattidae and Anaplectidae were driven by the uplift of the Himalayas and deglaciation during the Quaternary, leading to the present-day distributions of these taxa.  相似文献   

7.
Bark beetles in the genus Dendroctonus may attack and kill several species of coniferous trees, some of them causing major economic losses in temperate forests throughout North and Central America. For this reason, they have been widely studied. However, various aspects of the taxonomy and evolutionary history of the group remain contentious. The genus has been subdivided in species groups according to morphological, biological, karyological or molecular attributes, but the evolutionary affinities among species and species groups within the genus remain uncertain. In this study, phylogenetic relationships among Dendroctonus species were reassessed through parsimony‐based cladistic analysis of morphological and DNA sequence data. Phylogenetic inference was based on 36 morphological characters and on mitochondrial DNA sequences of the cytochrome oxidase I (COI) gene. Analyses were carried out for each dataset, as well as for the combined data analysed simultaneously, under equal and implied weights. According to the combined analysis, the genus Dendroctonus is a monophyletic group defined by at least three synapomorphic characters and there are four main lineages of varied composition and diversity within the genus. Within these lineages, several monophyletic groups match, to some extent, species groups defined by previous authors, but certain groups proposed by those authors are polyphyletic or paraphyletic.  相似文献   

8.
The problem of how accurately paraphyletic taxa versus monophyletic (i.e., holophyletic) groups (clades) capture underlying species patterns of diversity and extinction is explored with Monte Carlo simulations. Phylogenies are modeled as stochastic trees. Paraphyletic taxa are defined in an arbitrary manner by randomly choosing progenitors and clustering all descendants not belonging to other taxa. These taxa are then examined to determine which are clades, and the remaining paraphyletic groups are dissected to discover monophyletic subgroups. Comparisons of diversity patterns and extinction rates between modeled taxa and lineages indicate that paraphyletic groups can adequately capture lineage information under a variety of conditions of diversification and mass extinction. This suggests that these groups constitute more than mere "taxonomic noise" in this context. But, strictly monophyletic groups perform somewhat better, especially with regard to mass extinctions. However, when low levels of paleontologic sampling are simulated, the veracity of clades deteriorates, especially with respect to diversity, and modeled paraphyletic taxa often capture more information about underlying lineages. Thus, for studies of diversity and taxic evolution in the fossil record, traditional paleontologic genera and families need not be rejected in favor of cladistically-defined taxa.  相似文献   

9.
To further investigate phylogeny of kinetoplastid protozoa, the sequences of small subunit (18S) ribosomal RNA of nine bodonid isolates and ten isolates of insect trypanosomatids have been determined. The root of the kinetoplastid tree was attached to the branch of Bodo designis and/or Cruzella marina. The suborder Trypanosomatina appeared as a monophyletic group, while the suborder Bodonina was paraphyletic. Among bodonid lineages, parasitic organisms were intermingled with free-living ones, implying multiple transitions to parasitism and supporting the 'vertebrate-first hypothesis'. The tree indicated that the genera Cryptobia and Bodo are artificial taxa. Separation of fish cryptobias and Trypanoplasma borreli as different genera was not supported. In trypanosomatids, the genera Leptomonas and Blastocrithidia were polyphyletic, similar to the genera Herpetomonas and Crithidia and in contrast to the monophyletic genera Trypanosoma and Phytomonas. This analysis has shown that the morphological classification of kinetoplastids does not in general reflect their genetic affinities and needs a revision.  相似文献   

10.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   

11.
A morphological, anatomical, and molecular study of the two genera (Heterocladia and Trigenea) and three species of the tribe Heterocladieae (Rhodomelaceae, Ceramiales) is presented. First collections of male and female gametophytes of Heterocladia australis Decaisne and Trigenea umbellata J. Agardh and of tetrasporophytes of the type species of Trigenea, T. australis Sonder, have allowed a much clearer assessment of these taxa from a classical morphological standpoint. Reproductive and vegetative characters of the two Trigenea species are shown to be virtually identical to those of Heterocladia, which differs from Trigenea principally in having both flattened and terete lateral branches, as opposed to exclusively terete axes throughout. As a consequence, we propose to transfer the Trigenea species to the earlier‐named genus Heterocladia as H. caudata L. Phillips, H.‐G. Choi, G.W. Saunders et Kraft, nom. nov. and H. umbellata ( J. Agardh) L. Phillips, H.‐G. Choi, G.W. Saunders et Kraft, comb. nov. The close relationship of the three species is supported by molecular data, as nucleotide sequences of the 18S rRNA gene from each are nearly identical. The same sequences from species of eight other rhodomelaceous genera plus those from five outgroup taxa are analyzed to provide grounds for preliminary phylogenetic inferences about the position of the Heterocladieae in the Rhodomelaceae. Both the Heterocladieae and the Rhodomelaceae are monophyletic taxa in our analyses, the Heterocladieae grouping weakly with the Bostrychieae and the problematic Australian endemic genus Sonderella, the latter yet to be assigned to a tribe. Representatives of groups with which Heterocladia has been associated previously, such as the Lophothalieae and Brongniartelleae, appear to be only distantly related, although many more taxa need to be analyzed before the systematic position of the genus becomes clear.  相似文献   

12.
Phylogeny, character evolution, and classification of Sapotaceae (Ericales)   总被引:2,自引:0,他引:2  
We present the first cladistic study of the largely tropical family Sapotaceae based on both morphological and molecular data. The data were analyzed with standard parsimony and parsimony jackknife algorithms using equally and successive weighted characters. Sapotaceae are confirmed to constitute two main evolutionary lineages corresponding to the tribes Isonandreae‐Mimusopeae‐Sideroxyleae and Chrysophylleae‐Omphalocarpeae. The Sideroxyleae are monophyletic, Isonandreae are polyphyletic as presently circumscribed, and as suggested by the analyses, the subtribe Mimusopeae‐Mimusopinae has evolved within the Mimusopeae‐Manilkarinae, which hence is also paraphyletic. Generic limits must be altered within Sideroxyleae with the current members Argania, Nesoluma and Sideroxylon. Argania cannot be maintained at a generic level unless a narrower generic concept is adopted for Sideroxylon. Nesoluma cannot be upheld in a narrow or broad generic concept of Sideroxylon. The large tribe Chrysophylleae circumscribes genera such as Chrysophyllum, Pouteria, Synsepalum, and Xantolis, but the tribe is monophyletic only if the taxa from Omphalocarpeae are also included. Neither Chrysophyllum nor Pouteria are monophyletic in their current definitions. The results indicate that the African taxa of Pouteria are monophyletic and distinguishable from the South American taxa. Resurrection of Planchonella, corresponding to Pouteria section Oligotheca, is proposed. The African genera Synsepalum and Englerophytum form a monophyletic group, but their generic limits are uncertain. Classification of the Asian genus Xantolis is particularly interesting. Morphology alone is indecisive regarding Xantolis relationships, the combined unweighted data of molecules and morphology indicates a sister position to Isonandreae‐Mimusopeae‐Sideroxyleae, whereas molecular data alone, as well as successive weighted combined data point to a sister position to Chrysophylleae‐Omphalocarpeae. An amended subfamily classification is proposed corresponding to the monophyletic groups: Sarcospermatoideae (Sarcosperma), Sapotoideae (Isonandreae‐Mimusopeae‐Sideroxyleae) and Chrysophylloideae (Chrysophylleae‐Omphalocarpeae), where Sapotoideae circumscribes the tribes Sapoteae and Sideroxyleae as well as two or three as yet unnamed lineages. Morphological characters are often highly homoplasious and unambiguous synapomorphies cannot be identified for subfamilies or tribes, which we believe are the reason for the variations seen between different classifications of Sapotaceae. © The Willi Hennig Society 2005.  相似文献   

13.
Allium subgenus Melanocrommyum (Alliaceae) from Eurasia comprises about 150 mostly diploid species adapted to arid conditions. The group is taxonomically complicated with different and contradictory taxonomic treatments, and was thought to include a considerable number of hybrid species, as the taxa show an admixture of assumed morphological key characters. We studied the phylogeny of the subgenus, covering all existing taxonomic groups and their entire geographic distribution. We analyzed sequences of the nuclear rDNA internal transcribed spacer region (ITS) for multiple individuals of more than 100 species. Phylogenetic analyses of cloned and directly sequenced PCR products confirmed the monophyly of the subgenus, while most sections were either para- or polyphyletic. The splits of the large sections are supported by differences in the anatomy of flower nectaries. ITS data (i) demand a new treatment at sectional level, (ii) do not support the hypotheses of frequent gene flow among species, (iii) indicate that multiple rapid radiations occurred within different monophyletic groups of the subgenus, and (iv) detected separately evolving lineages within three morphologically clearly defined species (cryptic species). In two cases these lineages were close relatives, while in Allium darwasicum they fall in quite different clades in the phylogenetic tree. Fingerprint markers show that this result is not due to ongoing introgression of rDNA (ITS capture) but that genome-wide differences between both lineages exist. Thus, we report one of the rare cases in plants where morphologically indistinguishable diploid species occurring in mixed populations are non-sister cryptic species.  相似文献   

14.
Samuli Lehtonen   《Aquatic Botany》2009,91(4):279-290
The phylogenetic relationships of aquatic plant families Alismataceae and Limnocharitaceae were investigated by cladistic analysis of morphological and cytological characters. The use of morphological data allowed much wider taxon sampling than in recent molecular studies, and resulted in several new hypotheses. Limnocharitaceae was resolved as a paraphyletic group giving rise to the monophyletic Alismataceae, contradicting with the results from molecular studies. Most of the currently accepted genera were relatively well supported as monophyletic groups, with polyphyletic Caldesia and paraphyletic Limnophyton as notable exceptions. Phylogenetic relationships between different genera remained poorly supported, but it is suggested that the base chromosome number n = 11 is derived from the plesiomorphic n = 7.  相似文献   

15.
Phylogenetic relationships within Collembola were determined through the cladistic analysis of 131 morphological characters and 67 exemplar taxa representing the major families of the group, with special emphasis on Poduromorpha. The results show that the order Poduromorpha is monophyletic and the sister group to the remaining Collembola, with Entomobryomorpha monophyletic and the sister group to the clade Neelipleona + Symphypleona. In Entomobryomorpha, Actaletidae is the sister group of the remaining families. In Poduromorpha, Tullbergiinae is monophyletic as well as Onychiurinae and the group Tetrodontophorinae + Onychiurinae which is the sister group of the remaining Poduromorpha; Tetrodontophorinae is paraphyletic; Onychiuridae is polyphyletic; Isotogastruridae is not an intermediate between Poduromorpha and Entomobryomorpha, it is the sister group of Tullbergiinae; Odontellidae is monophyletic and the sister group to the clade Neanuridae + Brachystomellidae; in Neanuridae, Frieseinae and the group Pseudachorutinae + Morulinae + Neanurinae are monophyletic; Morulinae is the sister group of Neanurinae; Pseudachorutinae is paraphyletic; Hypogastruridae is polyphyletic; Podura aquatica (Poduridae) is not 'primitive', it clusters with the genera Xenylla and Paraxenylla in Hypogastruridae. On the basis of these relationships and the position of the aquatic species, the most parsimonious hypothesis is a terrestrial edaphic origin for the springtails.  相似文献   

16.
Many taxon names in any classification will be composed of taxa that have yet to be demonstrated as monophyletic, that is, characterized by synapomorphies. Such taxa might be called aphyletic, the flotsam and jetsam in systematics, simply meaning they require taxonomic revision. The term aphyly is, however, the same as, if not identical to, Hennig's “Restkörper” and Bernardi's merophyly. None of these terms gained common usage. We outline Hennig's use of “Restkörper” and Bernardi's use of merophyly and compare it to aphyly. In our view, application of aphyly would avoid the oft made assumption that when a monophyletic group is discovered from within an already known and named taxon, then the species left behind are rendered paraphyletic. By identifying the flotsam and jetsam in systematics, we can focus on taxa in need of attention and avoid making phylogenetic faux pas with respect to their phylogenetic status.  相似文献   

17.
Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms that are morphologically difficult to discern from one another. In molecular phylogenetic trees of the nuclear‐encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well‐supported clade in Amoebozoa. The polyphyletic nature of the hartmannellids has led to many taxonomic problems, in particular paraphyletic genera. Recent taxonomic revisions have alleviated some of the problems. However, the genus Saccamoeba is paraphyletic and is still in need of revision as it currently occupies two distinct lineages. Here, we report a new clade on the tree of Tubulinea, which we infer represents a novel genus that we name Ptolemeba n. gen. This genus subsumes a clade of hartmannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. In accordance with previous research, we formalize the clade as distinct from Saccamoeba. Transmission electron microscopy of our isolates illustrate that both molecularly discrete species can be further differentiated by their unique mitochondrial cristal morphology.  相似文献   

18.
Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well-supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula-clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation.  相似文献   

19.
The ocellate and pseudocellate diatoms in the Eupodiscaceae and Biddulphiaceae (respectively) are common inhabitants of the marine littoral (and plankton zone) with a rich fossil history making them important components of marine stratigraphic studies and good candidates for molecular dating work. These diatoms are important for un‐derstanding the phylogeny of the diatoms as a whole, as molecular phylogenies have blurred the traditional distinction between the pennate and multipolar non‐pennate diatoms. However, the convoluted taxonomic history of these groups has the potential to disrupt both stratigraphic and molecular dating studies. Although efforts have been made to examine frustule morphology of several ocellate and pseudocellate diatoms and develop a morphological scheme to define genera, very little work has been done to determine how these groups are interrelated. In this study, we use nuclear and chloroplast molecular markers to construct a phylogeny of a diverse sampling of Eupodiscaceae and Biddulphiaceae taxa. The ocellus‐bearing taxa (Eupodiscaceae) are monophyletic, and thus the ocellus may be a useful character in delimiting the Eupodiscaceae, the Biddulphiaceae are polyphyletic and scattered across a number of lineages of multipolar non‐pennate diatoms. Hypothesis testing aimed at assessing the likeliness of several morphology based hypotheses against the molecular data highlights uncertainty in both types of data. We present evidence that there are monophyletic genera within both the Biddulphiaceae and Eupodiscaceae, and recommend the taxa within the Odontella mobilensis/sinensis/regia clade be transferred to a new genus: Trieres Ashworth & Theriot.  相似文献   

20.
We present a comprehensively sampled three‐gene phylogeny of the monophyletic Forcipulatacea, one of three major lineages within the crown‐group Asteroidea. We present substantially more Southern Hemisphere and deep‐sea taxa than were sampled in previous molecular studies of this group. Morphologically distinct groups, such as the Brisingida and the Zoroasteridae, are upheld as monophyletic. Brisingida is supported as the derived sister group to the Asteriidae (restricted), rather than as a basal taxon. The Asteriidae is paraphyletic, and is broken up into the Stichasteridae and four primary asteriid clades: (1) a highly diverse boreal clade, containing members from the Arctic and sub‐Arctic in the Northern Hemisphere; (2) the genus Sclerasterias; (3) and (4) two sister clades that contain asteriids from the Antarctic and pantropical regions. The Stichasteridae, which was regarded as a synonym of the Asteriidae, is resurrected by our results, and represents the most diverse Southern Hemisphere forcipulatacean clade (although two deep‐sea stichasterid genera occur in the Northern Hemisphere). The Labidiasteridae is artificial, and should be synonymized into the Heliasteridae. The Pedicellasteridae is paraphyletic, with three separate clades containing pedicellasterid taxa emerging among the basal Forcipulatacea. Fossils and timing estimates from species‐level phylogeographic studies are consistent with prior phylogenetic hypotheses for the Forcipulatacea, suggesting diversification of basal taxa in the early Mesozoic, with some evidence for more widely distributed ranges from Cretacous taxa. Our analysis suggests a hypothesis of an older fauna present in the Antarctic during the Eocene, which was succeeded by a modern Antarctic fauna that is represented by the recently derived Antarctic Asteriidae and other forcipulatacean lineages. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 646–660.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号