首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Specimens of the fiddler crab Uca subcylindrica (Stimpson) were captured in south Texas (USA) for locomotor rhythm studies. Actographic data were analyzed using Tau™ sofware. Under constant illumination (LL) and darkness (DD), the semiterrestrial crabs express a circadian rhythm of locomotion. When exposed to illumination/darkness cycles (LD12:12 or LD14:10), their bouts of activity are entrained to the photoperiod. In LD, activity is generally bimodal with an initial burst about 0.5 h after illumination. A second burst of activity begins 1 to 2 h before the end of illumination. When transferred from LD to LL, a locomotor rhythm with an average period of 24.6 ± 1.0 h (n = 19) is expressed in 89 percent of the crabs. On the other hand, when placed in DD after LD (n = 8), the crabs are either arrythmic or weakly rhythmic (period = 23.8 ± 0.2 h; n = 2). If the onset of illumination is advanced by 6 h, a period of less than 24.0 h is detected in the actogram. If the onset of illumination is delayed by 6 h, a locomotor rhythm with a period greater than 24.0 h appears. The locomotor behavior of this species of fiddler crab, Uca subcylindrica, is not related to the tidal rhythmicities seen in other members of the genus Uca. Rather, it has strong circadian components.  相似文献   

2.
The locomotor activities of individual specimens of Uca subcylindrica (Stimpson) collected from semi-arid, supratidal habitats in south Texas and northeastern Mexico were studied in the laboratory using periodogram analysis. When crabs were placed under constant darkness (DD) or constant illumination (LL), free-running circadian rhythms were observed in the activity recordings. The locomotor activity of strongly rhythmic crabs in LL has an average period length of 24.4 h. Crabs held in DD express motor rhythms with periods of approximately 24.0 h. In LL the most common wave form for activity is unimodal, while under DD it is bimodal. Recordings under natural illumination (NL) revealed that both period length and the time of maximum activity (phasing) varied through the year. During winter months, the crabs are primarily diurnal with peaks in activity occurring between 0900 and 2100 h and possess a circadian rhythm with a 23.9 h period. During summer, crabs were nocturnal with maximal activity between 1300 and 0600 and a circadian period closer to 24.0 h. In these experiments, the rhythmic locomotor activities of U. subcylindrica are best described as “circadian”. This is unusual for a genus known for its expression of circatidal and circalunidian rhythms.  相似文献   

3.
The locomotor activities of individual specimens of Uca subcylindrica (Stimpson) collected from semi-arid, supratidal habitats in south Texas and northeastern Mexico were studied in the laboratory using periodogram analysis. When crabs were placed under constant darkness (DD) or constant illumination (LL), free-running circadian rhythms were observed in the activity recordings. The locomotor activity of strongly rhythmic crabs in LL has an average period length of 24.4 h. Crabs held in DD express motor rhythms with periods of approximately 24.0 h. In LL the most common wave form for activity is unimodal, while under DD it is bimodal. Recordings under natural illumination (NL) revealed that both period length and the time of maximum activity (phasing) varied through the year. During winter months, the crabs are primarily diurnal with peaks in activity occurring between 0900 and 2100 h and possess a circadian rhythm with a 23.9 h period. During summer, crabs were nocturnal with maximal activity between 1300 and 0600 and a circadian period closer to 24.0 h. In these experiments, the rhythmic locomotor activities of U. subcylindrica are best described as “circadian”. This is unusual for a genus known for its expression of circatidal and circalunidian rhythms.  相似文献   

4.
Long-term recordings of locomotor activity were obtained from intact freshwater crabs, Pseudothelphusa americana in constant darkness (DD), constant light (LL) and different light-dark (LD) protocols. Bimodal rhythms were typically observed in this crab when subjected to DD or LD, with bouts of activity anticipating lights-on and lights-off, respectively. Freerunning circadian rhythms were expressed in both DD and LL for longer than 30 days. In DD, we observed that some animals presented different period lengths for each activity component. During LL, activity was primarily unimodal, however spontaneous splitting of the rhythms were observed in some animals. When activity was recorded under artificial long days, the morning bouts maintained their phase relationship but the evening bouts changed their phase relationship with the Zeitgeber. Our results indicate that, bimodal locomotor activity rhythm in the crab Pseudothelphusa americana is variable among organisms. The characteristics of phase relationship with LD and responses to LL for morning and evening bouts, suggest that, locomotor activity could be driven by multiple oscillators, and that coupling between these oscillators may be regulated by light.  相似文献   

5.
Long-term recordings of locomotor activity were obtained from intact freshwater crabs, Pseudothelphusa americana in constant darkness (DD), constant light (LL) and different light-dark (LD) protocols. Bimodal rhythms were typically observed in this crab when subjected to DD or LD, with bouts of activity anticipating lights-on and lights-off, respectively. Freerunning circadian rhythms were expressed in both DD and LL for longer than 30 days. In DD, we observed that some animals presented different period lengths for each activity component. During LL, activity was primarily unimodal, however spontaneous splitting of the rhythms were observed in some animals. When activity was recorded under artificial long days, the morning bouts maintained their phase relationship but the evening bouts changed their phase relationship with the Zeitgeber. Our results indicate that, bimodal locomotor activity rhythm in the crab Pseudothelphusa americana is variable among organisms. The characteristics of phase relationship with LD and responses to LL for morning and evening bouts, suggest that, locomotor activity could be driven by multiple oscillators, and that coupling between these oscillators may be regulated by light.  相似文献   

6.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

7.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

8.
Under controlled laboratory conditions, the locomotor activity rhythms of four species of wrasses (Suezichthys gracilis, Thalassoma cupido, Labroides dimidiatus andCirrhilabrus temminckii) were individually examined using an actograph with infra-red photo-electric switches in a dark room at temperatures of 21.3–24.3°C, for 7 to 14 days. The locomotor activity ofS. gracilis occurred mostly during the light period under a light-dark cycle regimen (LD 12:12; 06:00-18:00 light, 18:00-06:00 dark). The locomotor activity commenced at the beginning of the light period and continued until a little before the beginning of dark period. The diel activity rhythm of this species synchronizes with LD. Under constant illumination (LL) this species shows distinct free-running activity rhythms varying in length from 23 hrs. 39 min. to 23 hrs. 47 min. Therefore,S. gracilis appears to have a circadian rhythm under LL. However, in constant darkness (DD), the activity of this species was greatly suppressed. All the fish showed no activity rhythms in DD conditions. After DD, the fish showed the diel activity rhythm with the resumption of LD, but this activity began shortly after the beginning of light period. The fish required several days to synchronize with the activity in the light period. Therefore,S. gracilis appeared to continue the circadian rhythm under DD. InT. cupido, the locomotor activity commenced somewhat earlier than the beginning of the light period and continued until the beginning of the dark period under LD. The diel activity rhythm of this species synchronizes with LD. Under LL, four of the five specimens of this species tested showed free-running activity rhythms for the first 5 days or longer varying in length from 22 hrs. 54 min. to 23 hrs. 39 min. Although the activity of this species was suppressed under DD, two of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 38 min. to 23 hrs. 50 min. under DD. Therefore, it was ascertained thatT. cupido has a circadian rhythm. InL. dimidiatus, the locomotor activity rhythm under LD resembled that observed inT. cupido. The diel activity rhythm of this species synchronizes with LD. Under LL, four of seven of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 07 min. to 25 hrs. 48 min. Although the activity of this species was suppressed under DD, three of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 36 min. to 23 hrs. 41 min. under DD. Therefore, it was ascertained thatL. dimidiatus has a circadian rhythm. Almost all locomotor activity of C.temminckii occurred during the light period under LD. The diel activity rhythm of this species coincides with LD. Under LL, two of four of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 32 min. to 23 hrs. 45 min. Although the activity of this species was suppressed under DD, one of the four fish showed free-running activity rhythms throughout the experimental period. The length of the free-running period was 23 hrs. 21 min. under DD. Therefore,C. temminckii appeared to have a circadian rhythm. According to field observations,S. gracilis burrows and lies in the sandy bottom whileT. cupido, L. dimidiatus, andC. temminckii hide and rest in spaces among piles of boulders or in crevices of rocks during the night. It seems that the differences in nocturnal behavior among the four species of wrasses mentioned above are closely related to the intensity of endogenous factors in their locomotor activity rhythms.  相似文献   

9.
Locomotor activity of the surface-dwelling millipede Syngalobolus sp. was recorded under laboratory conditions. Infra-red diodes were used to detect the locomotor activity in an oval shaped chamber, which was connected with an event recorder. The results of 11 individuals showed that the millipedes entrained to light/dark (LD12:12 h) conditions with negative phase angle difference (–83.2 ± 24.72 min). The millipedes showed a clear-cut free-running rhythm with a period (t) of 23.8 ± 1.0 h (n = 9) in constant darkness (DD). The period in continuous light (LL) was relatively greater (25.2 ± 0.1 h; n = 3) than that in DD.  相似文献   

10.
We used four replicate outbred populations of Drosophila melanogaster to investigate whether the light regimes experienced during the pre-adult (larval and pupal) and early adult stages influence the free-running period (τDD) of the circadian locomotor activity rhythm of adult flies. In a series of two experiments four different populations of flies were raised from egg to eclosion in constant light (LL), in light/dark (LD) 12:12 h cycle, and in constant darkness (DD). In the first experiment the adult male and female flies were directly transferred into DD and their locomotor activity was monitored, while in the second experiment the locomotor activity of the emerging adult flies was first assayed in LD 12:12 h for 15 days and then in DD for another 15 days. The τDD of the locomotor activity rhythm of flies that were raised in all the three light regimes, LL, LD 12:12 h and in DD was significantly different from each other. The τDD of the locomotor activity rhythm of the flies, which were raised in DD during their pre-adult stages, was significantly shorter than that of flies that were raised as pre-adults in LL regime, which in turn was significantly shorter than that of flies raised in LD 12:12 h regime. This pattern was consistent across both the experiments. The results of our experiments serve to emphasise the fact that in order to draw meaningful inferences about circadian rhythm parameters in insects, adequate attention should be paid to control and specify the environment in which pre-adult rearing takes place. The pattern of pre-adult and early adult light regime effects that we see differs from that previously observed in studies of mutant strains of D. melanogaster, and therefore, also points to the potential importance of inter-strain differences in the response of circadian organisation to external influences.  相似文献   

11.
Light plays a key role in the development of biological rhythms in fish. Previous research on Senegal sole has revealed that both spawning rhythms and larval development are strongly influenced by lighting conditions. However, hatching rhythms and the effect of light during incubation are as yet unexplored. Therefore, the aim of this study was to investigate the impact of the light spectrum and photoperiod on Solea senegalensis eggs and larvae until day 7 post hatching (dph). To this end, eggs were collected immediately after spawning during the night and exposed to continuous light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white light (LDW), blue light (LDB; λpeak?=?463?nm), or red light (LDR; λpeak?=?685?nm). Eggs exposed to LDB had the highest hatching rate (94.5%?±?1.9%), whereas LDR and DD showed the lowest hatching rate (54.4%?±?3.9% and 48.4%?±?4.2%, respectively). Under LD conditions, the hatching rhythm peaked by the end of the dark phase, but was advanced in LDB (zeitgeber time 8 [ZT8]; ZT0 representing the onset of darkness) in relation to LDW and LDR (ZT11). Under DD conditions, the same rhythm persisted, although with lower amplitude, whereas under LL the hatching rhythm split into two peaks (ZT8 and ZT13). From dph 4 onwards, larvae under LDB showed the best growth and quickest development (advanced eye pigmentation, mouth opening, and pectoral fins), whereas larvae under LDR and DD had the poorest performance. These results reveal that developmental rhythms at the egg stage are tightly controlled by light characteristics, underlining the importance of reproducing their natural underwater photoenvironment (LD cycles of blue wavelengths) during incubation and early larvae development of fish. (Author correspondence: )  相似文献   

12.
The locomotor activity rhythms were examined by using an actograph with infra-red photo-electric switches for two species of wrasses, (Halichoeres tenuispinnis andPteragogus flagellifera) under various light conditions. InH. tenuispinnis, the locomotor activity of almost all fish under light-dark cycle regimen (LD12:12; 06:00–18:00 light, 18:00–06:00 dark) commenced somewhat earlier than the beginning of light period and continued till somewhat earlier than the beginning of the dark period. This species clearly showed free-running activity rhythms under both constant illumination (LL) and constant darkness (DD). Therefore,H. tenuispinnis appeared to have a circadian rhythm. The length of the circadian period ranged from 23 hr. 30 min. to 23 hr. 44 min. under LL, and was from 23 hr. 39 min. to 24 hr. 18 min. under DD. On the other hand, the locomotor activity ofP. flagellifera occurred mostly in the light period under LD 12:12. The activity of this species continued through LL, but was greatly suppressed in DD, so that none of the fish had any activity rhythm in both constant conditions. It was known from field observations thatH. tenuispinnis burrowed and lay in sandy bottoms, whileP. flagellifera hid and rested in bases of seagrasses and shallow crevices of rocks during the night. In the present two wrasses, it seemed that the above-mentioned difference of noctural behavior was closely related to the intensity of the endogenous factor in the activity rhythm.  相似文献   

13.
The locomotor activity rhythm of the isopod, Porcellio olivieri, was investigated in Gannouch site in the south of Tunisia. The rhythm was monitored under constant temperature in individual animals in winter under two simultaneous regimens: the light–dark (LD) cycle and the continuous darkness (DD). Results revealed that whatever regimens, actograms, and mean activity curves showed that specimens of P. olivieri concentrated their activity during the experimental and subjective night. The species exhibited a locomotor rhythm period significantly shorter under LD (T = 23h13 ± 0h44) than DD (τ = 24h28 ± 0h58). However, the locomotor activity rhythm was less stable and the individuals were significantly more active under entraining conditions than constant darkness. The activity pattern of this species will be discussed as an adaptative strategy to respond to environmental conditions.  相似文献   

14.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Locomotor activity of the surface-dwelling millipede Syngalobolus sp. was recorded under laboratory conditions. Infra-red diodes were used to detect the locomotor activity in an oval shaped chamber, which was connected with an event recorder. The results of 11 individuals showed that the millipedes entrained to light/dark (LD12:12 h) conditions with negative phase angle difference (-83.2 ± 24.72 min). The millipedes showed a clear-cut free-running rhythm with a period (t) of 23.8 ± 1.0 h (n = 9) in constant darkness (DD). The period in continuous light (LL) was relatively greater (25.2 ± 0.1 h; n = 3) than that in DD.  相似文献   

16.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

17.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6–9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6–9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

18.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683–696, 2001)  相似文献   

19.
Summary The rhythm of autophagic degradation (AV) in visual cell inner segments shows circadian characteristics: it persists under constant conditions of continuous darkness (DD) and continuous light (LL) and can be reentrained to phase-shifts of the light-dark (LD) cycle. However, unlike the rhythm of disk-shedding and many other circadian rhythms, the rhythm of AV persists with a distinct peak even after 3 days of LL and is rapidly abolished to almost baseline levels after 1.5 days of DD, confirming our previous observations of a strong light-dependence of AV. Since the rhythms of disk-shedding and AV reveal this inverse pattern in DD and LL, different regulative mechanisms may be involved.Light stimulation with increasing intensities at day-time and night-time evoked AV responses that increased and disk-shedding responses that decreased at higher intensities. Furthermore, both the AV and phagosome response was different according to day-time or night-time stimulation, pointing towards the possibility of a circadian phase of sensitivity to light.Abbreviations AV autophagic degradation, autophagic vacuole, autophay - LD light dark cycle - DD constant darkness - LL constant light - CNS central nervous system - SCN suprachiasmatic nucleus - DA dopamine - ftc footcandle - ANOVA analysis of variance  相似文献   

20.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light‐dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free‐running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights‐on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号