首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
The beetle T. gigas is interesting as a successful survivor among competing species in a hostile, arid, environment (the sand-desert), and as a promising biological model system in laboratory experiments. Behaviour and motor activity rhythms of T. gigas were studied in the field, using autonomous monitors. In order to avoid extreme temperatures, this beetle developed a peculiar behavioural strategy: narrow time windows for activity (in the morning and in the evening). The rest of the time it spends deep in the sand, at constant comfortable temperature and in continuous darkness, in temporal isolation. We demonstrated that there are no available Zeitgebers for the beetle during its rest interval. Hence, a reliable circadian clock is the only way for T. gigas to implement the proper timing of its activity. It means, that the circadian timing system of this beetle is not just a source of relative advantage, but is a crucial prerequisite of survival.  相似文献   

2.
The results of long-term studies of the circadian rhythms of activity in Trigonoscelis gigas and T. sublaevicollis, typical and abundant representatives of the tenebrionid fauna in the Kara Kum desert are given. T. gigas and T. sublaevicollis are omni-seasonal species: their adults are observed on the sand surface from spring till late autumn. They spend their resting period in soil. Adults of both species are similar in morphology, ecology, and behavior, strongly differing in the circadian rhythm pattern. T. gigas are active only at twilight, whereas T. sublaevicollis are characterized by nocturnal activity. Therefore, inhabiting the same habitat, T. gigas and T. sublaevicollis never meet each other under natural conditions, independently of the season and weather. Hence, the circadian rhythm of activity can serve as a reliable mechanism of reproductive isolation in closely related tenebrionid species.  相似文献   

3.
《Chronobiology international》2013,30(10):1312-1328
Robustness is a fundamental property of biological timing systems that is likely to ensure their efficient functioning under a wide range of environmental conditions. Here we report the findings of our study aimed at examining robustness of circadian clocks in fruit fly Drosophila melanogaster populations selected to emerge as adults within a narrow window of time. Previously, we have reported that such flies display enhanced synchrony, accuracy, and precision in their adult emergence and activity/rest rhythms. Since it is expected that accurate and precise circadian clocks may confer enhanced stability in circadian time-keeping, we decided to examine robustness in circadian rhythms of flies from the selected populations by subjecting them to a variety of environmental conditions comprising of a range of photoperiods, light intensities, ambient temperatures, and constant darkness. The results revealed that adult emergence and activity/rest rhythms of flies from the selected stocks were more robust than controls, as they displayed enhanced stability under a wide variety of environmental conditions. These results suggest that selection for adult emergence within a narrow window of time results in the evolution of robustness in circadian timing systems of the fruit fly D. melanogaster. (Author correspondence: or )  相似文献   

4.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

5.
Urinary gamma glutamyltranspeptidase (GGT) and leucine aminopeptidase (LAP), renal tubular brush border enzymes, have been shown to be sensitive indicators of renal tubular functions. This study documents circadian rhythms in the urinary activity of GGT and LAP, statistically validated and quantified by the cosinor method, in 15 male Wistar rats standardized to a LD 12:12 illumination schedule (light from 0800 hr to 2000 hr) and fed ad libitum. The acrophase of the circadian rhythms in urinary GGT and LAP activity occurred at the end of the rest span of the animals: between 1730 and 1915 for GGT (depending on the mode of expression of the activity) and between 1700 and 1910 for LAP. Of striking resemblance in their timing, both these rhythms were also of large amplitude (about 50% of the mesor for urinary GGT activity and about 45% for LAP one). The circadian acrophases of urinary GGT and LAP activity led in timing the circadian rhythms in urine volume and creatinine excretion by about 13hr. Such findings consistent with the circadian variations found by other investigators in GGT in kidney homogenates or in LAP in human urine thus reflect a periodicity in renal tubular function. The reasons for these circadian variations, still unknown at this time, are discussed. The influence recently demonstrated of the hormonal context on protein and enzyme synthesis at the tubule, and its phase relations to urinary enzyme excretion emphasize how much the circadian rhythm in urinary GGT and LAP activity is well included in the murine time structure. Therefore it should be of interest to consider the circadian rhythm in urinary GGT and LAP release as a marker rhythm of predictive value as to the side effects of nephrotoxic drugs.  相似文献   

6.
Summary Evidence presented in this paper indicates that a robust circadian rhythm in the frequency of neural activity can be recorded from the central nervous system of intact cockroaches, Leucophaea maderae. This rhythmicity was abolished by optic lobe removal. Spontaneous neural activity was then used as an assay to demonstrate that the optic lobe is able to generate circadian oscillations in vitro. These results provide direct evidence that the cockroach optic lobe is a self-sustained circadian oscillator capable of generating daily rhythms in the absence of neural or hormonal communications with the rest of the organism.Abbreviations CNS central nervous system - DD constant dark - LD light/dark cycle - SCN suprachiasmatic nucleus - ZT Zeitgeber time  相似文献   

7.
8.
1 The generation time of the bark beetle predator Thanasimus formicarius (L.) (Col.: Cleridae) was found to be predominantly two years both in the field and in rearing experiments conducted with two of its main prey species, the pine shoot beetle Tomicus piniperda (L.) and the spruce bark beetle Ips typographus (L.) (Col.: Scolytidae). 2 Emergence of T. formicarius adults in the first summer was only observed in one of the two rearing experiments, and these individuals represented only 6% of that generation. 3 All individuals not emerging as adults in the first summer remained as larvae in their pupal chambers until the second summer. Pupae were found starting around mid-June, and adults (in pupal chambers) were found from late July through to the end of August. 4 Newly emerged adults had to feed in order to survive hibernation. 5 The existence of T. formicarius races, specialized on certain bark beetle species and with phenologies matching their hosts, could not be demonstrated. After hibernation there was no difference in feeding activity, timing of egg-laying or proportion of egg-laying females between the T. formicarius adults reared as larvae on T. piniperda (flight period in April) and those reared as larvae on I. typographus (main flight period generally starting in late May or early June) when exposed to a temperature and day-length typical of the early spring conditions prevailing during the flight period of T. piniperda. 6 T. formicarius was parasitized by Enclisis vindex (Tschek) (Hym.: Ichneumonidae) in the pupal chamber. 7 The importance of these findings for the population dynamics of bark beetles is discussed.  相似文献   

9.
The localization of hydrogenase protein in Desulfovibrio gigas cells grown either in lactate-sulfate or hydrogen-sulfate media, has been investigated by subcellular fractionation with immunoblotting and by electron microscopic immunocytochemistry. Subcellular fractionation experiments suggest that no integral membrane-bound hydrogenase is present in D. gigas. About 40% of the hydrogenase activity could be extracted by treatment of D. gigas cells with Tris-EDTA buffer. The rest of the soluble hydrogenase activity (50%) was found in the soluble fraction which was obtained after disruption of Tris-EDTA extracted cells and high speed centrifugation. Both soluble hydrogenase fractions purified to homogeneity showed identical molecular properties including the N-terminal aminoacid sequences of their large and small subunits. Polyacrylamide gel electrophoresis of the proteins of the subcellular fractions revealed a single band of hydrogenase activity exhibiting the same mobility as purified D. gigas hydrogenase. Western blotting carried out on these subcellular fractions revealed crossreactivity with the antibodies raised against (NiFe) hydrogenase. The lack of crossreactivity with antibodies against (FE) or (NiFeSe) hydrogenases, indicated that only (NiFe) type hydrogenase is present in D. gigas.Immunocytolocalization in ultrathin frozen sections of D. gigas cells grown either in lactate-sulfate, pyruvate-sulfate or hydrogen-sulfate media showed only a (NiFe) hydrogenase located in the periplasmic space. The bioenergetics of D. gigas are discussed in the light of these findings.  相似文献   

10.
Summary Photoperiod plays an important role in controlling the annual reproductive cycle of the male lizard Anolis carolinensis. The nature of photoperiodic time measurement in Anolis was investigated by exposing anoles to 3 different kinds of lighting paradigms (resonance, T cycles, and night breaks) to determine if photoperiodic time measurement involves the circadian system. Both the reproductive response and the patterns of entrainment of the activity rhythm were assessed. The results show that the circadian system is involved in photoperiodic time measurement in this species and that a discrete photoinducible phase resides in the latter half of the animals' subjective night. Significantly, the ability of the circadian system to execute photoperiodic time measurement is crucially dependent on the length of the photoperiod. Resonance, T cycle and night break cycles utilizing a photoperiod 10–11 h in duration reveal circadian involvement whereas these same cycles utilizing 6 or 8 h photoperiods do not.Abbreviation CRPP circadian rhythm of photoperiodic sensitivity  相似文献   

11.
Summary Behavioral aspects of photoentrainment of circadian locomotor activity rhythms were recorded for a nocturnal den-dwelling rodent, the flying squirrel,Glaucomys volans. Methods included both telemetric monitoring and infrared observations of animals under constant dark (DD) or light-dark (LD) schedules in either standard wheel cages or in newly developed simulated den cages. By means of the den cages, several aspects of a circadian activity cycle could be simultaneously measured emphasizing the arousal from rest, the light-sampling behavior by which a squirrel assessed the environmental photoregimen, and the phase-shifting by which photoentrainment was achieved. Each animal in a den cage remained for 12 or more hours of its rest period almost exclusively in the darkened nest box, then at an abrupt arousal time moved to the light-sampling porthole. In darkness each animal initiated wheel activity immediately after arousal; light at arousal time, however, induced a return to the nest box for a nap and a delay phase-shift in onset of activity of approximately 40 min. On subsequent days, each animal appeared to be free-running ( FR< 24 h) until onset again advanced into the light period. A squirrel usually viewed only a few minutes light per day, and on free-running days occasionally saw none of the 12-h light period. The significance of these data for theories of circadian photoentrainment is discussed.Abbreviations CT circadian time - PRC phase response curve - SCN suprachiasmatic nucleus  相似文献   

12.
Circadian clocks regulate physiological and behavioral processes in a wide variety of organisms, and any malfunction in these clocks can cause significant health problems. In this paper, we report the results of our study on the physiological consequences of circadian dysfunction (malfunctioning of circadian clocks) in two wild‐type populations of fruit flies (Drosophila melanogaster). We assayed locomotor activity behavior and lifespan among adult flies kept under constant dark (DD) conditions of the laboratory, wherein they were categorized as rhythmic if their activity/rest schedules followed circadian (approximately 24 h) patterns, and as arrhythmic if their activity/rest schedules did not display any pattern. The rhythmic flies from both populations lived significantly longer than the arrhythmic ones. Based on these results, we conclude that circadian dysfunction is deleterious, and proper functioning of circadian clocks is essential for the physiological well being of D. melanogaster.  相似文献   

13.
Quality of life (QoL) is estimated from patients scores to items related to everyday life, including rest and activity. The rest–activity rhythm reflects endogenous circadian clock function. The relation between the individual rhythm in activity and QoL was investigated in 200 patients with metastatic colorectal cancer. Patients wore a wrist actigraph (Ambulatory Monitoring Inc., New York, NY) for 3–5 d before chronotherapy, and completed a QoL questionnaire developed by the European Organization for Research and Treatment of Cancer (QLQ-C30) plus the Hospital Anxiety and Depression Scale. The rest–activity circadian rhythm was characterized by the mean activity level (m), autocorrelation coefficient at 24h (r24), and the dichotomy index (I<O), a ratio between the amount of activity while in and out of bed. The distribution of the rest–activity cycle parameters and that of QoL scores was independent of sex, age, primary tumor, number of metastatic sites, and prior treatment. Both the 24h rhythm indicators were positively correlated with global QoL score as well as physical, emotional, and social functioning. Negative correlations were found between m, r24, or I<O and fatigue, appetite loss, and nausea. The rest–activity circadian rhythm appeared to be an objective indicator of physical welfare and QoL. This analysis suggests that circadian function may be one of the biological determinants of QoL in cancer patients.  相似文献   

14.
The aim of the present study was to evaluate the characteristics of the circadian rest‐activity rhythm of cancer patients. Thirty‐one in‐patients, consisting of 19 males and 12 females, were randomly selected from the Regional Cancer Center, Pandit Jawaharlal Nehru Medical College, Raipur, India. The rest‐activity rhythm was studied non‐invasively by wrist actigraphy, and compared with 35 age‐matched apparently healthy subjects (22 males and 13 females). All subjects wore an Actiwatch (AW64, Mini Mitter Co. Inc., USA) for at least 4–7 consecutive days. Fifteen‐second epoch length was selected for gathering actigraphy data. In addition, several sleep parameters, such as time in bed, assumed sleep, actual sleep time, actual wake time, sleep efficiency, sleep latency, sleep bouts, wake bouts, and fragmentation index, were also recorded. Data were analyzed using several statistical techniques, such as cosinor rhythmometry, spectral analysis, ANOVA, Duncan's multiple‐range test, and t‐test. Dichotomy index (I<O) and autocorrelation coefficient (r24) were also computed. The results validated a statistically significant circadian rhythm in rest‐activity with a prominent period of 24 h for most cancer patients and control subjects. Results of this study further revealed that cancer patients do experience a drastic alteration in the circadian rest‐activity rhythm parameters. Both the dichotomy index and r24 declined in the group of cancer patients. The occurrence of the peak (acrophase, Ø) of the rest‐activity rhythm was earlier (p<0.001) in cancer patients than age‐ and gender‐matched control subjects. Results of sleep parameters revealed that cancer patients spent longer time in bed, had longer assumed and actual sleep durations, and a greater number of sleep and wake bouts compared to control subjects. Further, nap frequency, total nap duration, average nap, and total nap duration per 1 h awake span were statistically significantly higher in cancer patients than control subjects. In conclusion, the results of the present study document the disruption of the circadian rhythm in rest‐activity of cancer in‐patients, with a dampening of amplitude, lowering of mean level of activity, and phase advancement. These alterations of the circadian rhythm characteristics could be attributed to disease, irrespective of variability due to gender, sites of cancer, and timings of therapies. These results might help in designing patient‐specific chronotherapeutic protocols.  相似文献   

15.
16.
Eclosion is the stage in development when the adult insect emerges from the shell of its old cuticle. The sequence of behaviors necessary for eclosion is coordinated by an integrated system of hormones and is activated by hormones that relay developmental readiness. The circadian clock, which controls the timing of behaviors such as the rest:activity rhythm of adult insects, also controls eclosion timing. A number of groups are actively investigating the mechanisms by which the circadian clock restricts or gates eclosion to a particular time of day. Data from these studies are beginning to reveal details of the molecular and physiological basis of the eclosion rhythm.  相似文献   

17.
Eclosion is the stage in development when the adult insect emerges from the shell of its old cuticle. The sequence of behaviors necessary for eclosion is coordinated by an integrated system of hormones and is activated by hormones that relay developmental readiness. The circadian clock, which controls the timing of behaviors such as the rest:activity rhythm of adult insects, also controls eclosion timing. A number of groups are actively investigating the mechanisms by which the circadian clock restricts or gates eclosion to a particular time of day. Data from these studies are beginning to reveal details of the molecular and physiological basis of the eclosion rhythm.  相似文献   

18.
19.
Phase-response experiments using 1-h light pulses (LPs) of 1,100 lux applied under constant dim light of 0.3 lux were conducted with common marmosets, Callithrix j. jacchus, in order to obtain a complete phase-response curve established according to the common experimental procedure in a diurnal primate. Maximal phase delays of the free-running circadian activity rhythm (- 90 min) were induced by LPs delivered at circadian time (CT) 12; e.g., during the beginning of the marmosets' rest time, maximal advances (+ 25 min) were elicited by pulses administered during the late subjective night at CT 21. In contrast to rodents, neither regular transient cycles nor regular period responses resulted from LP applications at different phases. To check whether the underlying period length affects the phase response in primates as well, the marmosets' circadian timing system was entrained to 25 h by a lightrdark (LD) cycle of 12.5:12.5 h. The 1-h LPs were delivered during the first circadian cycle produced under constant dim light after the entraining LD periods. Here, LPs applied at CT 21 led to phase advances exceeding those measured during the steady-state free run. At CT 12, minor or no phase delays could be elicited. These findings show that the phase-shifting effect of LPs on the circadian system of marmosets is similar to that observed in other diurnal mammals. Some of the results indicate that in this diurnal primate, LP-induced phase shifts may be mediated in part by a light-induced increase in locomotor activity (arousal).  相似文献   

20.
The circadian timing system determines the optimal timing and waveform of drug tolerability, yet treatment itself can alter this system. Gemcitabine is an antimetabolite agent that is active against lung and pancreatic cancers. Tolerability for this drug is best following dosing at ZT 11 in mice. The authors investigated the effects of gemcitabine on the circadian rhythms in body temperature and rest activity as physiological markers of the circadian timing system. Healthy unrestrained B6D2F(1) mice implanted with radiotelemetry transmitters were kept in LD 12:12 prior to receiving a single intravenous dose of gemcitabine (200, 400, or 600 mg/kg) at ZT 11 or 23. Gemcitabine (400 mg/kg) transiently suppressed the body temperature rhythm in 50% of the mice dosed at ZT 23, as compared to none of the mice treated at ZT 11 within the 2 days following drug dosing (Fisher 's exact test p = 0.04). The rest-activity circadian rhythm was suppressed in 40% (ZT 11) and 50% (ZT 23) of the mice, respectively. In the mice with persistent circadian rhythms, gemcitabine delivery at ZT 23 resulted in more prominent decreases and slower recovery of circadian mesor and amplitude of both rhythms as compared to mice treated at ZT 11. Gemcitabine also induced a transient internal desynchronization between temperature and activity rhythms following dosing at ZT 23 but not at ZT 11. The delivery of a single therapeutic dose of gemcitabine near its time of least toxicity produced least alterations in circadian physiological outputs, a finding that suggests that the extent of circadian disruption contributes to toxicokinetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号