首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of glucocorticoids on the diurnal rhythm of rat liver 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) has been controversial. Also, diurnal variation of D site-binding protein (DBP) has been suggested to be under a negative control of glucocorticoids. Here we have re-evaluated the effects of adrenal hormones on these rhythms at the level of gene expression. Sham-operated and bilaterally adrenalectomized rats were killed at 4-hr intervals and total RNA from each liver was subjected to Northern blot analysis. Diurnal variation patterns of HMGR and DBP mRNA levels in adrenalectomized rats were substantially identical to those in sham-operated rats, although DBP mRNA levels in adrenalectomized rats were slightly more abundant than in control rats. HMGR mRNA levels in adrenalectomized rats in the dark period were insensitive to a single injection of adrenal hormones, whereas the augmented levels of DBP mRNA in these animals were returned to the control levels by this treatment, indicating that glucocorticoids are prone to decrease the amplitude of variation in the DBP gene expression. The present results suggest that adrenal hormones are not critical for the generation of diurnal rhythms of these mRNAs.  相似文献   

2.
Adrenal hormones were studied as possible triggering substances of the synthesis of acute-phase reactants in rats. alpha-Macrofoetoprotein, which rises sharply in concentration during inflammation, was used to monitor the acute-phase reaction. In normal rats glucocorticoids and catecholamines induce alpha-macrofoetoprotein synthesis; glucocorticoids only increase alpha-macrofoetoprotein to moderate levels in plasma, but catecholamines enhance alpha-macrofoetoprotein synthesis to very high levels, comparable with those observed in the post-injury phase. However, catecholamines in vivo also activate the adrenal cortex, suggesting a synergistic effect of both kinds of adrenal hormones. Our study showed that in adrenalectomized rats, the effect of catecholamines on alpha-macrofoetoprotein synthesis is greatly diminished, whereas the moderate effect of glucocorticoids remains. Combination of glucocorticoids and catecholamines induces extremely high alpha-macrofoetoprotein levels in both adrenalectomized and normal rats. With crossed immunoelectrophoresis it was shown that other acute-phase reactants, such as haptoglobin and alpha 1-major acute-phase protein, are affected differently by the hormones. Contrary to glucocorticoids, catecholamines give a pattern comparable with that found after surgical injury.  相似文献   

3.
4.
The activity of L-ornithine decarboxylase (EC 4.1.1.17, ODC) has become a useful indicator of hormone responsiveness. Various regimens of dexamethasone, aldosterone and epinephrine, alone or in combination, were administered to adrenalectomized rats either in acute or chronic doses. In addition, adrenalectomized rats, which were chronically treated with aldosterone and epinephrine, were given a single injection of 50 micrograms dexamethasone and sacrificed at various time intervals after hormone treatment. Hepatic and thymic ODC activity was measured. The expected dexamethasone effect, an increase in hepatic and a decrease in thymic ODC, was observed. This study also revealed that aldosterone induced similar responses in these tissues. Epinephrine had the opposite effect since chronic administration of dexamethasone or aldosterone with epinephrine resulted in control levels of ODC. Furthermore, when aldosterone and epinephrine were chronically administered to adrenalectomized rats, to study the acute effects of dexamethasone on rat thymus and liver, the time course of the response in each tissue was found to be distinct. The influence of the adrenal gland on rat thymus and liver is not restricted only to glucocorticoids, but may also involve other hormones which it secretes.  相似文献   

5.
Liver metallothionein (MT) mRNA and serum MT levels of adrenalectomized (ADX) and sham-ADX rats in basal and stress (1, 3 or 6 h of restraint) conditions have been measured. Serum MT levels were overall lower in ADX than in sham-ADX rats. Basal liver MT mRNA levels were increased in ADX rats, suggesting that glucocorticoids have an inhibitory role on the regulation of liver MT synthesis. In contrast, liver MT mRNA levels were increased by stress in sham-ADX but not in ADX rats, suggesting a stimulatory role for glucocorticoids. These results suggest that glucocorticoids have a different role in liver MT regulation depending on the physiological situation.  相似文献   

6.
L-type pyruvate kinase is an enzyme of the glycolytic pathway whose activity and mRNA levels fluctuate in the small intestine according to dietary status. Both the enzyme activity and mRNA concentration decline during fasting and increase upon refeeding either a glucose-rich or a fructose-rich diet. Using a single-strand M 13 phage complementary to L-type pyruvate kinase mRNA as probe, we determined the level of the mRNA in the small intestine of normal, adrenalectomized, thyroidectomized, diabetic and glucagon-treated or cAMP-treated animals refed either a glucose-rich or a fructose-rich diet. The specific mRNA is present in the small intestine of normal fasted rats and increases twofold and threefold on refeeding glucose and fructose respectively. However, the hormonal control of the gene expression differs according to the dietary carbohydrate. The L-type pyruvate kinase mRNA increase, induced by glucose feeding, is hormone-dependent and requires the presence of thyroid hormones and insulin. In fructose-fed rats a certain level of mRNA increase occurs regardless of the hormonal status of the animals, but the full induction of the mRNA by fructose requires the presence of glucocorticoids, thyroid hormones and insulin. Thus, the hormonal regulation of L-type pyruvate kinase gene expression in the small intestine is largely similar to that described in normal rat liver but the basal mRNA level and the stimulation of the mRNA increase by fructose are higher in the small intestine.  相似文献   

7.
8.
Vicentic A 《Peptides》2006,27(8):1942-1948
The central role of CART peptide in feeding, drug abuse and stress has been widely researched however, CART's role in the peripheral system are less explored. CART peptide is present in a variety of peripheral tissues including sympathetic ganglion neurons, adrenal glands, gut, pancreas and blood. Studies that examined circulating CART demonstrated that the active fragment with a molecular weight of CART55-102 is present in the blood of rats and rhesus macaques. Interestingly, CART expression in these species exhibits a distinctive diurnal rhythm which correlates with the respective daily rhythms of corticosterone and feeding. In the rat, adrenalectomy significantly reduces blood CART levels and abolishes its daily rhythm while corticosterone replacement reinstates CART expression to control levels. In addition, direct administration of corticosterone significantly increases CART blood levels while administration of corticosterone synthesis blocker metyrapone, inhibits CART blood levels. These data suggest that the adrenal gland could be a source of blood CART and that glucocorticoids may play a role in the generation of CART's diurnal rhythm. Moreover, fuel availability may be important in the control of CART levels and its daily rhythm, since 24 h food restriction alters CART levels and abolishes its rhythm. In addition to blood, both CART peptide and mRNA exhibit food-dependent diurnal rhythm in discrete rat brain areas including the nucleus accumbens, amygdala and hypothalamus. Altogether, these findings suggest that CART is influenced by hypothalamic-pituitary-adrenal interactions and that it may play a role in multiple physiological processes possibly involving feeding, stress, reward and motivation.  相似文献   

9.
Feeding rats with a fat meal caused marked reduction in the level of plasma urea and urinary output of urea and total nitrogen. Experiments were carried out to examine the possible intervention of some hormones in these phenomena. Protein sparing action of fat was exerted even in the alloxan-diabetic, adrenalectomized, hypophysectomized and thyroidectomized rats. Feeding rats with a fat meal caused no appreciable change in the level of cyclic AMP in liver and gastrocnemius muscle. The overall results obtained here are through! to suggest that the action of fat may be exerted independently of any hormones examined; insulin, glucocorticoids, cyclic AMP and other hormones excreted from adrenal, hypophysis and thyroid gland.  相似文献   

10.
Renal 11beta-hydroxysteroid dehydrogenase 2 (HSD2) catalyzes the conversion of active glucocorticoids to inert 11beta-keto compounds, thereby preventing the illicit binding of these hormones to mineralocorticoid receptors (MRs) and, thus, conferring aldosterone specificity. Absence or inhibition of HSD2 activity, originates a hypertensive syndrome with sodium retention and increased potassium elimination. Recent studies from our laboratory reported an increment of HSD2 activity in intact-stressed rats. To evaluate the adrenal involvement in this increase, we analyzed HSD2 activity and protein abundance in Intact, Sham-operated, and adrenalectomized rats under stress situations (gavage with an overload of 200 mM HCl (10 ml) and simulated gavage) or with corticosterone replacement. HSD2 activity was assessed in renal microsomal preparations obtained from different groups of animals. HSD2 protein abundance was measured by Western-blot. Circulating corticosterone was determined by radioimmunoassay. Sham-operated animals showed an increase in HSD2 activity and abundance compared to Intact and adrenalectomized rats suggesting the involvement of stress-related adrenal factors in HSD2 regulation. In the case of acidotic adrenalectomized animals, there was an increase in renal HSD2 activity when, along with the HCl overload, the rats were injected with corticosterone. This increment occurred without an increase in enzyme abundance. These results suggest the importance of circulating levels of glucocorticoids to respond to a metabolic acidosis, through regulation of HSD2 stimulation. The group subjected to a simulated gavage showed an increase in enzyme activity and protein abundance, thus demonstrating the need for both adrenal and extra-factors in the modulation of renal HSD2. The adrenalectomized animals injected with different doses of corticosterone, produced a progressive increase in enzyme activity and abundance, being significant for the dose of 68 microg corticosterone/100 g body weight. The highest dose (308 microg/100 g body weight) did not show any variation in activity and abundance compared to the control group. This biphasic effect of glucocorticoids could be explained taking into account their permissive and suppressive actions, depending on their blood levels. Knowing that stress induces multifactorial responses, it should not be surprising to observe a differential regulation in renal HSD2, confirming that different stressors act through different factors of both, adrenal and extra-adrenal origin.  相似文献   

11.
We determined the extent to which diurnal variation in cholesterol synthesis in liver is controlled by steady-state mRNA levels for the rate-limiting enzyme in the pathway, hydroxymethylglutaryl (HMG)-CoA reductase. Rats 30 days of age and maintained on a low-cholesterol diet since weaning were injected intraperitoneally with (3)H(2)O. The specific radioactivity of the whole-body water pool soon became constant, allowing for expression of values for incorporation of label into cholesterol as absolute rates of cholesterol synthesis. In liver, there was a peak of cholesterol synthesis from 8 pm to midnight, a 4-fold increase over synthesis rates from 8 am to noon. Increases in synthesis were quantitatively in lock step with increases in mRNA levels for HMG-CoA reductase occurring 4 h earlier. In a parallel experiment, rats received 1% cholesterol in the diet from weaning to 30 days of age. Basal levels of hepatic cholesterol synthesis were greatly diminished and there was little diurnal variation of cholesterol synthesis or of levels of mRNA for HMG-CoA reductase. Levels of mRNA for the low density lipoprotein receptor and scavenger receptor-B1 (putative high density lipoprotein receptor) showed little diurnal variation, regardless of diet. This suggests that diurnal variation of hepatic cholesterol synthesis is driven primarily by varying the steady-state mRNA levels for HMG-CoA reductase. Other tissues were also examined. Adrenal gland also showed a 4-fold diurnal increase in accumulation of recently synthesized cholesterol. In contrast to liver, however, there was little corresponding change in mRNA expression for HMG-CoA reductase. Much of this newly synthesized cholesterol may be of hepatic origin, imported into adrenal by SR-B1, whose mRNA was up-regulated 2-fold. In brain, there was no diurnal variation in either cholesterol synthesis or mRNA expression, and no influence of high- or low-cholesterol diets on synthesis rates or HMG-CoA reductase mRNA levels.  相似文献   

12.
Gene expression of the type 1 and 2 inositol 1,4,5-trisphosphate (IP(3)) receptors in the rat cardiac atria and ventricles and their possible modulation by single immobilization stress was studied. Single immobilization stress significantly elevated mRNA levels for both types of these receptors. To evaluate the involvement of glucocorticoids in the modulation of the gene expression of IP(3) receptors by immobilization stress, we used adrenalectomized and/or hypophysectomized rats. Since adrenalectomy and/or hypophysectomy completely abolished increase in IP(3) receptor's mRNA levels after the immobilization, we conclude that immobilization stress elevates mRNA of type 1 and 2 IP(3) receptors, mainly through the glucocorticoid responsive element.  相似文献   

13.
The regulation of angiotensinogen gene expression in response to adrenalectomy and dexamethasone treatment was examined in multiple rat tissues. Angiotensinogen mRNA as quantitated by slot blot hybridization utilizing an angiotensinogen cRNA probe was most abundant in the liver with levels in the brain, kidney, and adrenal of 50, 25, and 10%, respectively. No angiotensinogen mRNA was detected in testes or heart. Although no change in the quantity of angiotensinogen mRNA was found following adrenalectomy and maintenance on 0.9% saline, dexamethasone treatment of both normal and adrenalectomized rats resulted in a time-dependent and tissue-specific accumulation of angiotensinogen mRNA. In normal animals, the hepatic response to treatment was a 4.5-fold increase in angiotensinogen mRNA by 8 h which remained 2.4-fold above basal levels by 24 h. Angiotensinogen mRNA levels in the brains of normal rats treated with dexamethasone increased only 60% by 6 h and returned to basal levels by 24 h. In contrast to the increases seen in brain and liver, angiotensinogen mRNA derived from kidney did not significantly change following dexamethasone treatment. In adrenalectomized animals, the hepatic response to dexamethasone was similar to normal animals with a 3.7-fold increase by 6 h. The accumulation in brain was greater in these animals compared to normals and increased 3-fold by 8 h. Finally, dexamethasone did not significantly increase levels in the kidney. These results clearly demonstrate glucocorticoid regulation of angiotensinogen mRNA levels in liver and brain. In contrast, the kidney, an organ known to contain glucocorticoid receptors, does not respond with increased angiotensinogen mRNA levels following glucocorticoid stimulation. These studies provide the first evidence for tissue-specific differences in the control of angiotensinogen mRNA.  相似文献   

14.
Thiobarbituric acid-reactants (TBARs) are considered to be an index of lipid peroxidation. In the present experiments, the effect of stress and hormones on hepatic TBARs levels was studied in Sprague-Dawley rats. In unstressed conditions adrenalectomized rats showed higher TBARs levels than sham-adrenalectomized rats. The effect of adrenalectomy was reverted by the administration of corticosterone but not by that of aldosterone, indicating that glucocorticoids exert a negative role on the regulation of liver TBARs. The effect of these hormones appears to be a permissive one, since the administration of a long lasting ACTH preparation did not reduce liver TBARs. In contrast to that observed in unstressed rats, glucocorticoids appeared to increase liver TBARs in stressed rats. Nevertheless, other alternative explanations are possible. Finally, no evidence for a role of catecholamines in the regulation of hepatic TBARs was found.  相似文献   

15.
1. Melatonin and glucocorticoids are known to affect the immune response in an opposite mode. The probability for an interaction between these hormones in the thymus gland has been investigated in rats following chronic administration of exogenous melatonin and long-term exposure to variable levels of circulating glucocorticoids. 2. Daily melatonin administration was shown to affect the properties of corticosterone and progestin receptors in the thymus in the presence of normal and increased systemic corticosterone concentrations, but not in adrenalectomized animals. 3. In intact rats melatonin caused a marked increase in the affinity and a decrease in the density of thymic receptors for adrenal steroids. Following corticosterone overdosage, simultaneously with melatonin treatment, a decrease in receptor affinity and a relative increase in the number of binding sites was observed. 4. The results suggest that steroid hormone receptors in the thymus might be considered as a target site for the interaction between melatonin and adrenal steroids in the modulation of the immune response.  相似文献   

16.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is an essential enzyme in cholesterol biosynthesis. To study the expression of HMGR and corresponding cholesterol content in liver, adipose and muscle, six Chinese local breed (Huai pig) and Landrace pigs were selected. The results indicated that significant differences of cholesterol content in adipose (P < 0.01), liver (P < 0.05) and muscle (P < 0.01) tissues were detected between pigs of differing genetic backgrounds. HMGR mRNA expression were noted for adipose, liver and muscle of the two vastly differing genetics. Moreover cholesterol content differed (P < 0.01) among tissues across breed. Likewise, HMGR mRNA expression was different between adipose and liver tissues, muscle and liver tissues in both breeds; however, no difference was noted between adipose and muscle tissues. Results from this study indicate that cholesterol content and HMGR mRNA expression are higher in Huai pig tissues suggesting this gene is expressed in a breed- and tissue-dependent manner in pigs. Understanding the causes of variation in HMGR gene expression may provide crucial information about cholesterol biosynthesis.  相似文献   

17.
Anise oil, anethole, and several related compounds inhibit the deposition of glycogen in the livers of fasted, adrenalectomized rats by adrenal cortical extract. This effect is reversed by increased levels of adrenal extract.Anethole blocks the effect of adrenal cortical hormones in reducing insulin sensitivity of adrenalectomized rats.Adrenal hypertropy of unilaterally adrenalectomized rats is increased by anethole.It is postulated that these compounds compete for an active carbohydrate intermediate formed during glycogenesis.The possible role of β-glucuronidase is also pointed out.  相似文献   

18.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and cholesterol 7 alpha-hydroxylase (CYP7A1), essential enzymes of cholesterol synthesis and excretion, respectively, were isolated from a chicken liver cDNA library. When their recombinant proteins were overexpressed in HNK293 cells, corresponding enzyme activities were observed. The complete open reading frames of MHGR and CYP7A1 contained (i) 2625 base pairs (bp), predicting a protein of 875 amino acids, and (ii) 1539 bp, predicting a protein of 513 amino acids, respectively. By Northern blot analysis, chicken HMGR mRNA expression was detected in most tissues examined, however, the highest levels were found in liver, brain and ileum. CYP7A1 mRNA was detected only in the liver. Changes in chicken HMGR and CYP7A1 mRNA expression with nutritional state were examined and were shown to respond to certain nutritional treatments, i.e. fast refeeding and cholesterol supplementation. HMGR and CYP7A1 mRNA levels were significantly increased with maturation (i.e. egg producing), when compared to immature chickens. However, these stimulations were not associated with estrogen, although this does enhance triacylglycerol and very low density lipoprotein secretion by the chicken liver. The present study is the first to report the molecular characterization of HMGR and CYP7A1, key enzymes of cholesterol metabolism in avian species.  相似文献   

19.
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号