首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Temperature and photoperiod play major roles in insect ecology. Many insect species have fixed degree‐days for embryogenesis, with minimum and maximum temperature thresholds for egg and larval development and hatching. Often, photoperiodic changes trigger the transfer into the next life‐cycle stadium. However, it is not known whether this distinct pattern also exist in a species with a high level of phenotypic plasticity in life‐history traits. In the present study, eggs of the dragonfly Sympetrum striolatum Charpentier (Odonata: Libellulidae) are reared under different constant and fluctuating temperatures and photoperiodic conditions in several laboratory and field experiments. In general, and as expected, higher temperatures cause faster egg development. However, no general temperature or light‐days for eyespot development and hatching are found. The minimum temperature thresholds are distinguished for survival (2 °C), embryogenesis (6 °C) and larval hatching (above 6 °C). Low winter temperatures synchronize hatching. Above 36 °C, no eyespots are visible and no larvae hatch. In laboratory experiments, light is neither necessary for eyespot development, nor for hatching. By contrast to the laboratory experiments, the field experiment show that naturally changing temperature and photoperiod play a significant role in the seasonal regulation of embryonic development. The post‐eyespot development is more variable and influenced by temperature and photoperiod than the pre‐eyespot development. This developmental plasticity at the end of the embryogenesis might be a general pattern in the Libellulidae, helping them to cope with variation in environmental conditions.  相似文献   

2.
The effects of the duration and degree of chilling, and the temperature of incubation, on hatching of winter eggs of Panonychus ulmi (Koch) were investigated. For chilling, 0°C and 5°C were more effective than — 5° and 9°, and the limits for the reaction were close to — 10° and 15°. As the chilling period was increased from 60 to 200 days, the percentage hatch on incubation at 21° increased, and the mean incubation time and its variance decreased. Before the maximum effect of chilling was achieved, percentage hatch on incubation at 9° and 15° was higher than at 21°; 27° was lethal to most winter eggs though not to summer eggs. After chilling, the later stages of diapause development could occur at temperatures from 0° to 21°) i.e. above and below the threshold temperature for morphogenesis, 6–7° in both winter and summer eggs. Diapause development cannot, therefore, be a unitary process. The significance of the results is discussed in relation to forecasting the time of hatch in the field, and to the phenological aspects of hatching in the spring.  相似文献   

3.
Development of embryos and larvae in Ancherythroculter nigrocauda Yih et Woo (1964) and effects of delayed first feeding on larvae were observed after artificial fertilization. The fertilized eggs were incubated at an average temperature of 26.5°C (range: 25.7–27) and the larvae reared at temperatures ranging from 21.8 to 28°C. First cleavage was at 50 min, epiboly began at 7 h 5 min, heartbeat reached 72 per min at 24 h 40 min and hatching occurred at 43 h 15 min after insemination. Mean total length of newly hatched larvae was 4.04 ± 0.03 mm (n = 15). A one‐chambered gas bladder was observed at 70 h 50 min, two chambers occurred at 15 days, and scales appeared approximately 30 days after hatching. Larvae began to feed exogenously at day 4 post‐hatch at an average temperature of 24°C. Food deprivation resulted in a progressive atrophy of skeletal muscle fibres, deterioration of the larval digestive system and cessation of organ differentiation. Larval growth under food deprivation was significantly affected by the time of first exogenous feeding. Starved larvae began to shrink, with negative growth from day 6 post‐hatch. The point of no return (PNR) was reached at day 11 after hatching. Mortality of starved larvae increased sharply from day 12 after hatching.  相似文献   

4.
SUMMARY. Eggs collected from Hexagenia bilineata females were successfully reared in the laboratory at temperatures of 15, 20, 25 and 30°C. Eggs did not hatch at 10°C and although hatching was successful at 35°C, all nymphs at this temperature died while in early instars.
Survival of nymphs between the approximate size interval of 4–14 mm showed a significant decrease with increased temperatures. Nymphs at 15°C, however, generally did not survive transformation to the subaduit stage.
The growth pattern of individual nymphs was well described by a logistic curve at most temperatures. Furthermore, growth pattern was significantly affected by both temperature and sex.
Rate of development from oviposition to first emergence increased with increasing temperatures in a linear fashion between 15 and 30°C. The relationship was equally well described by a hyperbolic equation and a power-law equation. By extrapolation from the hyperbolic equation, the lower threshold temperature for development was estimated to be 10.1°C3.1°C. The degree (°C)-days required for development from oviposition to first emergence was calculated to be 2337 days with 95% confidence limits of 2045–2727 days under laboratory conditions.  相似文献   

5.
Cattle sucking lice, Linognathus vituli (L.) (Phthiraptera: Linognathidae), were obtained from naturally infected cattle and maintained within ‘arenas’ affixed to the backs of cattle confined in controlled environment chambers maintained at a constant temperature of 15 °C. Temperatures measured within the arenas at an ambient temperature of 15 °C were constant at about 34 °C and only slightly above the temperature on nearby skin. The effect of temperature on egg development was determined using a gradient of temperatures between 25 °C and 41 °C. Eggs did not develop at temperatures of < 26 °C or > 39 °C. Survival of eggs was highest at temperatures of 30 °C and 35 °C. The earliest hatch was observed at 5 days post‐oviposition (at 33–35 °C). Development was extended to as long as 13 days at the lower temperatures. Kaplan–Meier survival probabilities were compared for lice kept at two densities in the arenas and showed there to be no effect of density on louse survival. Similarly, the mean number of eggs/louse/day over an 8‐day period was not influenced by louse density.  相似文献   

6.
1. In the life cycle of monogonont rotifers it is generally assumed that diapausing eggs invariably hatch into amictic stem females which produce female offspring parthenogenetically. Diapausing eggs are only produced by later generations after sexual reproduction has been induced by environmental cues. 2. We show that populations of an undescribed Hexarthra species inhabiting small temporary ponds in the Chihuahuan Desert deviate from this life cycle pattern. These ponds may dry within days and up to 85% of females were mictic. Females producing male offspring and diapausing eggs were observed 1 or 2 days, respectively, after ponds had filled with water. 3. Under laboratory conditions, 7–46% of females hatching from re‐hydrated sediments were sexual. Male offspring of these females can fertilise other mictic stem females leading to diapausing egg formation. In laboratory experiments, females produced fully developed diapausing eggs within 1.9 days at 20 °C and 1.2 days at 30 °C. 4. In addition, embryonic development time (1.1–0.3 days at temperatures between 12 and 30 °C) and juvenile period (2.1–0.5 days for the same temperature range) are shorter than those of other rotifer species. In short‐lived habitats, the potential for rapid population development and production of new diapausing eggs may be crucial in the long‐term survival of populations.  相似文献   

7.
  1. At temperature levels from 10 to 25°C animals from resting eggs produce subitaneous eggs independent on temperature. In contrast animals from subitaneous eggs produce subitaneous eggs dependent on temperature. At a high rate subitaneous eggs are only formed at temperature levels above 20°C.
  2. Below 10°C no development occurs in the juveniles. At temperatures of 30/22°C (24.7°C) the first subitaneous eggs are formed after 6–9 days, at 14/9°C (10.7°C) they are formed after 34 days. At different temperature levels the developmental rate of the young is from 10.5 to 42 days. One generation extends over 16.5 (30/22°C) to 75 days (14/9°C). The average egg production is 10–20 subitaneous eggs or 30–60 resting eggs. The maximum egg production of one individual is 50 subitaneous eggs or 84 resting eggs. 50% of the animals have just formed resting eggs, before the juveniles are hatched. Resting eggs in the first egg-batch are formed 6–20 days later than subitaneous eggs. The duration of life is between 65 (30/22°C) and 140 days (19/13°C).
  3. Young worms in resting eggs have a dormance period of at least 15–30 days.
At room temperatures (20°C) no juvenile in resting eggs hatches from water. By combining room and refrigerator (3.5°C) temperatures the hatching rate increases to a maximum of 85%. To reach a hatching rate of 50–65% the influence of low temperatures must be at least 30 days. At room temperatures 60% of the young in resting eggs hatch from mud covered with water. Combining high and low temperatures the hatching success is between 67 and 81%, where the highest percentage of the young may hatch at room temperature. Up to 90 days low temperatures cause a maximum hatching rate of 79%. It decreases to approximately 30% after 180 days. At high temperatures resting eggs preserved in 100% moist mud, survive for two months. By adding a period of low temperatures the hatching rate increases to a maximum of 52%. Low temperatures are survived for more than 6 months. Up to 30 days preservation at 3.5°C causes a maximum hatching rate of 61%, up to 12o days it decreases to 30%. At room temperature the young in resting eggs are not resistant against air-dried mud (30–40% rel. air moisture). Combining high and low temperatures air-dried mud is endured 1 month (hatching rate 5–14%). Preservation of 30–120 days at 3.5°C and 70% rel. air moisture result in a hatching rate of 43–61%. li]4. In the open air in Middle-Europe there occur 5–6 generations of M. ehrenbergii per life-cycle. The first generation hatches from resting eggs in May, where the production of subitaneous eggs is independent on temperature. All other generations up to October hatch from subitaneous eggs. The egg-production of those worms is dependent on environmental factors. In summer subitaneous egg production prevails, in autumn resting egg production. The abundance during the life-cycle is dependent on the number of animals which produce subitaneous eggs. Resting eggs are predestinated to endure periods of dryness and cold. The life-cycles of the species M. lingua and M. productum are different from those of M. ehrenbergii in length and in the number of generations. In both species 7 generations occur over 8 to 8.5 respectively 5.5 months. M. nigrirostrum only forms resting eggs. The life-cycle consists of one generation from February/March to May/June.  相似文献   

8.
9.
Paratlanticus ussuriensis eggs overwinter by entering diapause, which can be prolonged to more than 1 year depending on environmental conditions. To determine temperature effects on diapause duration of P. ussuriensis eggs, the rates of embryonic development and hatching were compared at various temperatures conditions by measuring embryonic stages and egg weights. Most eggs stayed in a very young stage (blastoderm formation, stage 4) when reared at 15 and 20 °C, 10–30% eggs developed into middle or late stages when reared at 25 °C, and most embryos developed fully (stage 23/24) when reared at 30 °C. Egg weight at 30 °C was 1.5 times higher than those reared at 20 °C. Chilling induced hatching in embryos at stage 23/24. Chilling caused stage 4 embryos to develop into stage 24, but they failed to hatch in response to a second warm period. Thus, P. ussuriensis eggs can overwinter either as young embryos (initial diapause) or as fully-developed embryos (final diapause). Eggs that experience an initial diapause overwinter again the second year in a final stage diapause. The post-diapause period was shorter when embryos overwintered in a final stage diapause. The hatching rate was highest in a temperature range of 7.5–15 °C. Our results suggest that temperature is an important environmental factor for the control of prolonged diapause in P. ussuriensis and initial diapause plays an important role in the control of its life cycle.  相似文献   

10.
The effect of incubation temperature (2, 4, 6, 8 and 10° C) on haddock Melanogrammus aeglefinus development and growth during the embryonic period and in subsequent ontogeny in a common post‐hatch thermal environment (6° C) was investigated. Hatching times were inversely proportional to incubation temperature and ranged from 20·3 days at 2° C to 9·1 days at 10° C. Growth rates were directly proportional to incubation temperature during both the embryonic and larval periods. There was a significant decline in growth rates following hatch in all temperature groups. Compared to the endogenously feeding embryos, growth rates in the exogenous period declined by 4·4‐fold at 4° C to 3·9‐fold at 8° C, indicative of the demarcation between the endogenous and exogenous feeding periods. Yolk utilization varied from 17 days at 2° C to 6 days at 10° C and followed a three‐stage sigmoidal pattern with the initial lag period inversely proportional to incubation temperature. Time to 50% yolk depletion varied inversely with temperature but occurred 1–1·5 days post‐hatch at all temperatures. Additionally, the period between 10 and 90% yolk depletion also decreased with increased temperature. Overall developmental rate was sequential with and directly proportional (2·3‐fold increase) to incubation temperature while the time spent in each developmental stage was inversely proportional to temperature. Larger embryos tended to be produced at lower temperatures but this pattern reversed following hatch, as larvae from higher temperature groups grew more rapidly than those from other temperature groups. Larvae from all temperatures achieved a similar length (c.total length 4·5 mm) upon complete yolk absorption. The study demonstrated the significant impact that temperature has upon developmental and growth rates in both endogenous and exogenous feeding periods. It also illustrated that temperature changes during embryogenesis had significant and persistent effects on growth in subsequent ontogeny.  相似文献   

11.
The freshwater knob-tooth prawn Macrobrachium mammillodactylus is a commercially exploited species in the Philippines. To study the biology of this species, broodstock from the wild was collected, transported to the laboratory and kept in pairs in indoor polyethylene tanks for breeding. Eggs from berried females were sampled to follow the stages of embryonic development until hatching to zoea larva. It took 18.0?±?2.1?days for the eggs to hatch at ambient water temperature between 25 and 28?°C. The morphological landmarks of development at the different stages (pre-cleavage, cleavage, blastula, pre-nauplius, post-nauplius and pre-hatching) of the live embryos are described. Incremental percentage staging was adopted from 0% at fertilization to 100% at hatching and were matched with corresponding morphological development. Egg volume increased significantly toward the mid-to-later stages of development. The eye index also showed a significant increase as the egg developed. The colour of the egg mass changed from light olive green to grey as the eggs progressed in development. The general pattern of development was comparable to other members of the genus Macrobrachium.  相似文献   

12.
The timing of oviposition and hatching of Ixodes pacificus was investigated in the field and at constant temperatures in the laboratory. Replete females held at temperatures between 9 and 29°C began depositing eggs a mean of 9–70 days after drop off. Egg masses held between 12 and 25°C commenced hatching 25–178 days after the onset of oviposition. Eggs held at 9 or 29°C did not hatch. The lower temperature thresholds for development (LTD) for oviposition and hatching were 6.5 and 9°C, respectively. The number of degree days required for oviposition and hatching was 173 and 588, respectively. Replete females placed in the field on 2 December through to 8 March deposited eggs from 2 February through to 24 April; the eggs commenced hatching between 2 July and 21 August. Unfed larvae from two of 20 egg masses survived through the winter and fed readily when exposed to deer mice (Peromyscus maniculatus) on 22 April. Replete larvae were returned to the field and moulted between 9 and 21 August. Larvae exposed to deer mice in August, 4 weeks after hatching, also fed readily. Although further studies are needed to clarify the timing of nymphal development, the present study suggests that I. pacificus requires more than 1 year to complete its life cycle.  相似文献   

13.
Richard Shine 《Oecologia》1983,57(3):397-405
Viviparity (live-bearing) in reptiles often is interpreted as an adaptation to cold climates. This hypothesis relies on (i) body temperatures of gravid females being higher than soil (nest) temperatures; (ii) embryonic development being accelerated by this temperature difference; and (iii) survivorship of hatchlings being increased if eggs hatch before the advent of cold weather in autumn. I gathered data to test these assumptions, using eight species of scincid lizards in a high-elevation area of southeastern Australia. Due to behavioural thermoregulation, body temperatures of gravid lizards average ca. 7°C higher than soil (nest) temperatures. Oviparous female lizards retain eggs in utero for ca. 50% of development. Laboratory studies show that a temperature increase from 17°C (mean nest temperature) to 24°C (mean lizard temperature) reduces incubation periods of eggs by >40 days in heliothermic species, and <20 days in a thigmothermic species. In the field, soil temperatures drop to lethally low levels shortly after the usual time of hatching. Simple calculations show that without the acceleration of development caused by uterine retention, eggs could not hatch prior to the onset of these low temperatures in the field. These results support the major assumptions of the “cold climate hypothesis” for the evolution of reptilian viviparity.  相似文献   

14.
Populations of anadromous European smelt Osmerus eperlanus (L.) are declining across its geographical range in northern Europe, but no practical culture techniques exist to develop stock enhancement programmes for this species. In this study, a culture protocol is described to rear fish from fertilised eggs to mature adults in 2 years involving the use of ‘green water’, live feed and artificial diets. The sequence of embryonic development for eggs incubated at 10°C/0 ppt was described and photographed. To determine the optimum conditions for larval culture, fertilised eggs were reared at a range of salinities (0–20 ppt) and temperatures (5–18°C) until first feeding. Best hatching success (ca. 97%), size at hatch (ca. 0.8 mm) and survival to first feeding (ca. 96%) of larvae were achieved under combined conditions of low salinity (0–0 ppt) and temperature (5–10°C). No larvae survived a salinity of 20 ppt. The time taken from fertilisation to hatch (FtH) and hatching duration (HD) were temperature-dependent ranging from 42 days FtH and 10 days HD at 5ºC, to 10 days FtH and 2 days HD at 18°C irrespective of salinity. The results indicate that conservation programmes could utilise existing salmonid hatchery facilities (i.e. freshwater, ≤10°C water temperature) for stock enhancement. Since on-growing of smelt involves the logistical and technical problems of live feed production, it is recommended that smelt enhancement programme utilise freshwater hatchery facilities to rear fish until hatching, and then stock out onto known spawning grounds in rivers allowing hatched larvae to drift into estuaries to complete the larval and juvenile phases. This approach would minimise the time spent in the hatchery post-hatching, eliminate the need for live food production, prevent the development of predator-naïve fish, and hence would mimic the natural life cycle of the species as closely as possible.  相似文献   

15.
A study was conducted to determine the effects of six constant temperatures (15, 20, 25, 30, 35 and 40°C) on the post‐diapause embryonic development and the hatching time in three grasshopper species –Omocestus haemorrhoidalis (Charp.), Calliptamus abbreviatus Ikonn. and Chorthippus fallax (Zub.) – from the Inner Mongolian steppe. The results indicate that the species differ in the developmental rates, survival curves and cumulative hatching probabilities. The eggs of O. haemorrhoidalis had the fastest developmental rate with a low developmental threshold temperature of 9.9°C and the sum of effective temperature (SET) 211.2 degree‐days (DD). The corresponding values were 10.9°C and 210.6 DD for C. abbreviatus, 10.5°C and 240.2 DD for Ch. fallax respectively. The SET at which 50% of post‐diapause eggs hatched were 252.0 DD for O. haemorrhoidalis, 262.8 DD for C. abbreviatus, and 273.3 DD for Ch. fallax. The predicted maximal hatch ability of O. haemorrhoidalis (91.17%), C. abbreviatus (75.67%) and Ch. fallax (94.07%) occurred at 23.7, 29.0 and 31.3°C, respectively. The thermal death points of each species were reached at 43.3, 45.0 and 48.6°C. The optimal temperature ranges were 12.2–35.2°C for O. haemorrhoidalis, 21.7–36.3°C for C. abbreviatus and 20.9–41.7°C for Ch. fallax respectively. These results suggest that O. haemorrhoidalis adapt to hatch at a lower temperature range, C. abbreviatus adapt to mid‐temperature range, while Ch. fallax adapt to hatch at a higher temperature range. Although the SET of Ch. fallax is more than that of the other two species, it is not sufficient to explain the hatching sequence of the species in springtime. The results also indicate that Ch. fallax and O. haemorrhoidalis have wider adaptive temperature range than C. abbreviatus.  相似文献   

16.
Berried females of Macrobrachium rosenbergii (De Man) from Anuenue stock were allowed to incubate their eggs at three different temperatures (25,29, and 31°C). The newborn larvae were reared in the laboratory from hatch through completion of the metamorphosis to postlarva in 30 combinations of temperature (22–34° C) and salinity (0–34 ppt). Survival and stage attainment rates were observed. Multiple linear regression analysis and response surface methodology were used to estimate the response of larvae to these different temperature and salinity combinations. Dissimilarities in the response of zoeae from the three egg incubation temperatures were found. Larvae from eggs incubated at 25° C during embryonic development showed tolerance to a broader range of temperature and salinity conditions than those incubated at 29 or 31 °C. The response also changed with the ontogeny of the larvae. The zoeae are considered to have undergone acclimation during embryonic development, thus eliciting a different response.  相似文献   

17.
It is thought that grass carp (Ctenopharyngodon idella) eggs must remain suspended in the water column in order to hatch successfully. Using sand, the effects of varying sediment levels on grass carp eggs were tested at different developmental states and temperatures. Survival was high (15–35%, depending on temperature and trial) in the unburied treatment where eggs rested on a sand bed but were not covered by sediment. Survival was lower in the partial burial (5–10%) and very low (0–4%) in the full burial treatment. In all treatments, delayed hatching (organisms remaining in membranes past the stage of hatching competence) was noted. Deformities such as missing heads and pericardial edema occurred at high rates in the partial and full burials. Eggs that come in contact with the benthos and are resuspended in the water column should be considered in embryonic drift models.  相似文献   

18.
From ~35 days of age fast growing meat chickens spend extended periods sitting or lying and less time standing. In a fast-feathering parent line lower early incubation temperatures which delayed chick hatch time, improved bone ash and extended their standing time. This incubation study assessed the consequences of incubation temperatures, hatch time and chick management at hatch/take off on femoral bone ash (BA) in Cobb 500 meat chickens. Embryos were incubated under either Control (between 37.8°C and 38.2°C egg shell temperature (EST)) or a Slow start (from 37.2°C at sett (the start of incubation), reaching 37.8°C EST at day 13 incubation), temperatures. Hatched chicks were identified at 492 h (20.5 days of incubation – classified as early (E)) or, between >492 and ⩽516 h (>20.5 and ⩽21.5 days of incubation – classified as late (L)), from setting. The E hatch chicks were allocated across three post-hatch treatments; treatment 1: E hatch chicks that were sampled E at 492 h from setting; treatment 2: E hatch chicks that were fed for a further 24 h in a floorpen before being sampled L at 516 h from setting; treatment 3: E hatch chicks that spent a further 24 h in the incubator before being sampled L at 516 h from setting. All L hatch chicks formed one treatment group which was sampled L at 516 h (i.e. L hatch chicks sampled L). It is not possible to sample L hatching chicks E hence this treatment is absent from the experimental design. Slow start incubation resulted in a higher total hatch percentage with a greater proportion of chicks hatching L, compared with the Control incubation. The L hatching chicks had significantly higher BA than the E hatching chicks. Of the E hatching chicks, those sampled both E and L had significantly lower BA than E hatching chicks fed for 24 h before L sampling. The E hatch, fed and sampled L chicks had the numerically highest BA, which was not significantly different from the BA of the L hatching chicks sampled L These results demonstrate that BA at hatch can be improved, either by extending the incubation period through a Slow start incubation profile, inducing L hatch, or alternatively, via the prompt provision of feed to E hatching chicks.  相似文献   

19.
Eggs of the common snapping turtle, Chelydra serpentina, were incubated at constant temperatures ranging from 20°C to 30°C, At hatching, the oviducts were absent or incomplete in males; the testes were differentiated. In females at hatching, the oviduct was intact hut in some cases the gonad retained bisexual characteristics. Three months after hatching, the ovary was differentiated and contained follicles. Eggs incubated at 20°C and at 30°C developed into females in 100% of the cases. At 26°C, 99% of the individuals were males; at 24°C, 100% were males. More males than females developed at incubation temperatures of 22°C and 28°C.  相似文献   

20.
Hatching experiments were carried out on a population of Brachionus plicatilis (Dor strain) resting eggs produced in batch laboratory cultures under controlled conditions and then stored for at least one month at 4 °C in the dark. Light was found to be obligatory for termination of dormancy. Over the temperature range of 10–30 °C (at 9.0‰ salinity), hatching was optimal (40–70%) at 10–15 °C and decreased linearly with the rise in incubation temperature. Resting eggs incubated over a salinity range of 9–40‰ (at 15 °C) showed optimal hatching at 16‰. Incubation of resting eggs in distilled water permitted normal embryonic development, but neonates died at eclosion. Presence of algae, Chlorella stigmatophora (0.5 × 106 cell ml?1), was found to aid hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号