首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Australian platypus, Ornithorhynchus anatinus, is one of three extant genera of the order monotremata. Given the divergent evolutionary lineage of monotremes in relation to more commonly studied animals, it was of interest to determine first, whether platypuses possess endogenous biological pacemakers and, second, general parameters of aquatic activity rhythms under artificial and natural light-dark (LD) cycles. Using a novel recording device, aquatic activity rhythms were measured in three platypuses: a paired male and female studied together, and a single female studied in isolation from other platypuses. Under a constant photic environment, some evidence was found for persistent and free-running rhythmicity, indicating the presence of an endogenous circadian pacemaker in the platypus. Under artificial LD cycles the paired animals exhibited a nocturnal pattern of entrainment, although in the single female considerable variability in entrained phase-relations was found under natural LD cycles. Evidence for a circadian pacemaker in the hypothalamic region of platypuses is also discussed.  相似文献   

2.
It has been suggested that two endogenous timekeeping systems, a light-entrainable pacemaker (LEP) and a food-entrainable pacemaker (FEP), control circadian rhythms. To understand the function and interaction between these two mechanisms better, we studied two behavioral circadian rhythmicities, feeding and locomotor activity, in rats exposed to two conflicting zeitgebers, food restriction and light-dark cycles. For this, the food approaches and wheel-running activity of rats kept under light-dark (LD) 12:12, constant darkness (DD), or constant light (LL) conditions and subjected to different scheduled feeding patterns were continuously recorded. To facilitate comparison of the results obtained under the different lighting conditions, the period of the feeding cycles was set in all three cases about Ih less than the light-entrained or free-running circadian rhythms. The results showed that, depending on the lighting conditions, some components of the feeding and wheel-running circadian rhythms could be entrained by food pulses, while others retained their free-running or light-entrained state. Under LD, food pulses had little influence on the light-entrained feeding and loco-motor rhythms. Under DD, relative coordination between free-running and food-associated rhythms may appear. In both cases, the feeding activity associated with the food pulses could be divided into a prominent phase-dependent peak of activity within the period of food availability and another afterward. Wheel-running activity mainly followed the food pulses. Under LL conditions, the food-entrained activity consisted mainly of feeding and wheel-running anticipatory activity. The results provide new evidence that lighting conditions influence the establishment and persistence of food-entrained circadian rhythms in rats. The existence of two coupled pacemakers, LEP and FEP, or a multioscillatory LEP may both explain our experimental results.  相似文献   

3.
It has been suggested that two endogenous timekeeping systems, a light-entrainable pacemaker (LEP) and a food-entrainable pacemaker (FEP), control circadian rhythms. To understand the function and interaction between these two mechanisms better, we studied two behavioral circadian rhythmicities, feeding and locomotor activity, in rats exposed to two conflicting zeitgebers, food restriction and light-dark cycles. For this, the food approaches and wheel-running activity of rats kept under light-dark (LD) 12:12, constant darkness (DD), or constant light (LL) conditions and subjected to different scheduled feeding patterns were continuously recorded. To facilitate comparison of the results obtained under the different lighting conditions, the period of the feeding cycles was set in all three cases about Ih less than the light-entrained or free-running circadian rhythms. The results showed that, depending on the lighting conditions, some components of the feeding and wheel-running circadian rhythms could be entrained by food pulses, while others retained their free-running or light-entrained state. Under LD, food pulses had little influence on the light-entrained feeding and loco-motor rhythms. Under DD, relative coordination between free-running and food-associated rhythms may appear. In both cases, the feeding activity associated with the food pulses could be divided into a prominent phase-dependent peak of activity within the period of food availability and another afterward. Wheel-running activity mainly followed the food pulses. Under LL conditions, the food-entrained activity consisted mainly of feeding and wheel-running anticipatory activity. The results provide new evidence that lighting conditions influence the establishment and persistence of food-entrained circadian rhythms in rats. The existence of two coupled pacemakers, LEP and FEP, or a multioscillatory LEP may both explain our experimental results.  相似文献   

4.
Circadian rhythms in mammals are regulated by a system of endogenous circadian oscillators (clock cells) in the brain and in most peripheral organs and tissues. One group of clock cells in the hypothalamic SCN (suprachiasmatic nuclei) functions as a pacemaker for co-ordinating the timing of oscillators elsewhere in the brain and body. This master clock can be reset and entrained by daily LD (light-dark) cycles and thereby also serves to interface internal with external time, ensuring an appropriate alignment of behavioural and physiological rhythms with the solar day. Two features of the mammalian circadian system provide flexibility in circadian programming to exploit temporal regularities of social stimuli or food availability. One feature is the sensitivity of the SCN pacemaker to behavioural arousal stimulated during the usual sleep period, which can reset its phase and modulate its response to LD stimuli. Neural pathways from the brainstem and thalamus mediate these effects by releasing neurochemicals that inhibit retinal inputs to the SCN clock or that alter clock-gene expression in SCN clock cells. A second feature is the sensitivity of circadian oscillators outside of the SCN to stimuli associated with food intake, which enables animals to uncouple rhythms of behaviour and physiology from LD cycles and align these with predictable daily mealtimes. The location of oscillators necessary for food-entrained behavioural rhythms is not yet certain. Persistence of these rhythms in mice with clock-gene mutations that disable the SCN pacemaker suggests diversity in the molecular basis of light- and food-entrainable clocks.  相似文献   

5.
Hamsters that showed splitting of their circadian rhythms of wheel-running activity following long-term exposure to constant illumination (LL) were exposed to light-dark (LD) cycles with 2-hr dark segments, and with periods of 24.00, 24.23 or 24.72 hr. For comparison, hamsters showing nonsplit rhythms were also studied. In all cases of split rhythms, at least one of the two split components entrained to the LD cycles. In some animals, the second component continued to free-run until it merged with the entrained component, while in others, the second component also entrained to the LD cycle but maintained a stable phase angle of 6-14.5 hr relative to dark onset. These results were obtained in cases where the period of the LD cycle was shorter than that of the split rhythms and in cases where it was longer, implying that split components can be phase-advanced as well as phase-delayed by 2 hr of darkness. Three hamsters that showed stable entrainment of split rhythms were allowed to free-run in LL. The LD cycles were then reinstated, but instead of overlapping with the first component, as it did before, the dark segment was timed to overlap with the second. The entrainment patterns that ensued were similar to the ones obtained during the first LD exposure, indicating that the two split components respond to darkness in a qualitatively similar fashion. These results are further evidence that the pacemaker system underlying split circadian activity rhythms in hamsters is composed of two mutually coupled populations of oscillators that have similar properties, including a bidirectional phase response curve. Such a dual-oscillator organization may also underlie normal, or nonsplit, activity rhythms, as suggested by Pittendrigh and Daan (1976c), but the data are also compatible with the alternative view that the circadian pacemaker consists of a large number of coupled oscillators, which only dissociate into two separate populations in some animals under conditions of moderate LL intensity.  相似文献   

6.
The suprachiasmatic nucleus (SCN) is an endogenous circadian pacemaker, and SCN neurons exhibit circadian rhythms of electrophysiological activity in vitro. In vivo, the functional state of the pacemaker depends on changes in day length (photoperiod), but it is not known if this property persists in SCN tissue isolated in vitro. To address this issue, we prepared brain slices from hamsters previously entrained to light-dark (LD) cycles of different photoperiods and analyzed rhythms of SCN multiunit neuronal activity using single electrodes. Rhythms in SCN slices from hamsters entrained to 8:16-, 12:12-, and 14:10-h LD cycles were characterized by peak discharge rates relatively higher during subjective day than subjective night. The mean duration of high neuronal activity was photoperiod dependent, compressed in slices from the short (8:16 and 12:12 LD) photoperiods, and decompressed (approximately doubled) in slices from the long (14:10 LD) photoperiod. In slices from all photoperiods, the mean phase of onset of high neuronal activity appeared to be anchored to subjective dawn. Our results show that the electrophysiological activity of the SCN pacemaker depends on day length, extending previous in vivo data, and demonstrate that this capacity is sustained in vitro.  相似文献   

7.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129–136, 2000)  相似文献   

8.
The endogenous circadian program enables organisms to cope with the temporal ecology of their environment. It is driven by a molecular pacemaker, which is found in animals as well as plants at the level of the single cell. Unicellular organisms are, therefore, ideal model systems for the study of circadian systems because rhythms can be investigated in single cells at the molecular, physiological, behavioral and environmental level. In this review, we discuss the possible driving forces for the evolution of circadian rhythmicity in unicellular marine organisms. The current knowledge about the cellular and molecular mechanisms involved in the different components of the circadian system (input, oscillator and output) are described primarily with reference to the marine dinoflagellate,Gonyaulax polyedra. Light is the most important and best described environmental signal synchronizing the endogenous rhythms to the 24-hour solar day. However, little is known about the nature of circadian light receptors, which appear to be distinct from those that control behavioral light responses such as phototaxis. It has recently been shown inGonyaulaxthat nutrients, namely nitrate, can act as a non-photic zeitgeber for the circadian system. In this alga, bioluminescence is under circadian control, and the molecular mechanisms of this circadian output have been investigated in detail. The circadian program turns out to be more complex than simply consisting of an input pathway, a pacemaker and the driven rhythms. Different rhythms appear to be controlled by separate pacemakers, even in single cells, and both circadian inputs and outputs contain feedback loops. The functional advantages of this complexity are discussed. Finally, we outline the differences between the circadian program under laboratory and natural conditions.  相似文献   

9.
The effects of different illumination conditions on the main parameters of the circadian motor rhythms of the two chelipeds of the crayfish, Procambarus digueti , were compared. Under either constant darkness (DD) or constant light (LL) the phase relationship between the two circadian rhythms was more stable than under entrained conditions (LD cycles). These results suggest that the oscillators responsible for these rhythms differ in their sensitivity to light. The role of paired organs in the internal temporal order of the crayfish is discussed.  相似文献   

10.
The effects of different illumination conditions on the main parameters of the circadian motor rhythms of the two chelipeds of the crayfish, Procambarus digueti, were compared. Under either constant darkness (DD) or constant light (LL) the phase relationship between the two circadian rhythms was more stable than under entrained conditions (LD cycles). These results suggest that the oscillators responsible for these rhythms differ in their sensitivity to light. The role of paired organs in the internal temporal order of the crayfish is discussed.  相似文献   

11.
Circadian rhythms are regarded as essentially ubiquitous features of animal behavior and are thought to confer important adaptive advantages. However, although circadian systems of rodents have been among the most extensively studied, most comparative biology is restricted to a few related species. In this study, the circadian organization of locomotor activity was studied in the subterranean, solitary north Argentinean rodent, Ctenomys knightii. The genus, Ctenomys, commonly known as Tuco‐tucos, comprises more than 50 known species over a range that extends from 12°S latitude into Patagonia, and includes at least one social species. The genus, therefore, is ideal for comparative and ecological studies of circadian rhythms. Ctenomys knightii is the first of these to be studied for its circadian behavior. All animals were wild caught but adapted quickly to laboratory conditions, with clear and precise activity‐rest rhythms in a light‐dark (LD) cycle and strongly nocturnal wheel running behavior. In constant dark (DD), the rhythm expression persisted with free‐running periods always longer than 24 h. Upon reinstatement of the LD cycle, rhythms resynchronized rapidly with large phase advances in 7/8 animals. In constant light (LL), six animals had free‐running periods shorter than in DD, and 4/8 showed evidence of “splitting.” We conclude that under laboratory conditions, in wheel‐running cages, this species shows a clear nocturnal rhythmic organization controlled by an endogenous circadian oscillator that is entrained to 24 h LD cycles, predominantly by light‐induced advances, and shows the same interindividual variable responses to constant light as reported in other non‐subterranean species. These data are the first step toward understanding the chronobiology of the largest genus of subterranean rodents.  相似文献   

12.
Mutations in the disconnected (disco) gene act to disrupt neural cell patterning in the Drosophila visual system. These mutations also affect adult locomotor activity rhythms, as disco flies are arrhythmic under conditions of constant darkness (DD). To determine the state of the circadian pacemaker in disco mutants, we constructed with pers double mutants (a short period allele of the period gene) and assayed their behavioral rhythms in light-dark cycles (LD), and their biochemical rhythms of period gene expression under both LD and DD conditions. The results demonstrate that disco flies are rhythmic, indicating that they have an active circadian pacemaker that can be entrained by light. They also suggest that disco mutants block or interfere with elements of the circadian system located between the central pacemaker and its outputs that mediate overt rhythms.  相似文献   

13.
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.  相似文献   

14.
Recent studies have shown that the waveform of the rhythm of c-Fos photoinduction in the ventrolateral (vl) part of the suprachiasmatic nucleus (SCN) and that of the rhythm in the spontaneous c-Fos production in the dorsomedial (dm) part of the SCN in rats released into constant darkness depend on the photoperiod under which the animals were previously maintained. The aim of the present study was to find out how the rhythms of c-Fos immunoreactivity in both SCN subdivisions are affected by actual light-dark (LD) cycles with various photoperiods, either artificial or natural ones, that animals may usually experience. Rats were maintained under artificial LD cycles, with either a long (16-h photoperiod) or a short (8-h photoperiod) or under natural daylight. In the latter case, c-Fos rhythms were followed in the summer when the photoperiod lasted about 16 h or in winter when it lasted only 8 h. The rhythms of c-Fos immunoreactivity under natural daylight did not differ significantly from those under corresponding artificial photoperiods. Under a long photoperiod, the morning c-Fos rise in the dm- as well as in the vl-SCN occurred about 4 h earlier than under a short one. In both SCN subdivisions, the interval when the nighttime c-Fos immunoreactivity was low, was shorter under a long than under a short photoperiod by roughly 6 h. The morning c-Fos rise in the dm-SCN always preceded that in the vl-SCN. Whereas in the former one the rise was due to the endogenous dm-SCN rhythmicity, in the latter one the rise was induced by the morning light onset. The results show that whereas c-Fos rhythmicity under actual LD cycles is affected by the photoperiod in both SCN subdivisions, mechanism of c-Fos induction in the dm-SCN differs from that in the vl-SCN.  相似文献   

15.
Circadian rhythms are endogenously generated by a central pacemaker and are synchronized to the environmental LD cycle. The rhythms can be resynchronized, or reentrained, after a shift of the LD cycle, as in traveling across time zones. The authors have performed high-resolution mapping of the pacemaker to analyze the reentrainment process using rat pineal melatonin onset (MT(on)) and melatonin offset (MT(off)) rhythms as markers. Following LD (12:12) delays of 3, 6, and 12 h, MT(on) was phase locked immediately, whereas MT(off) shifted rapidly during the initial 1 through 3 cycles. In all animals, the MT(off) shifted beyond their expected phase positions in the new LD cycle, which resulted in a transient expansion of melatonin secretion duration for several cycles. It took MT(off) only 1, 2, or 3 cycles to complete most of the required phase shifts after 3, 6, or 12 h of the LD cycle delays, respectively. However, the final stabilization of phase relationships of both MT(on) and MT(off) required at least 6 cycles for rats experiencing a 3-h LD delay and much longer for the rest. These results reaffirmed the notion that both onset and offset phases of melatonin rhythms are important markers for the pacemaker and demonstrated that the reentrainment of the central pacemaker to a delay shift of the LD cycle is a 3-step process: an immediate phase lock of onset and a rapid delay shift of offset rhythms, overshoot of the offset, and, finally, a slow adjustment of both onset and offset phases. This study represents the 1st detailed analysis of the pacemaker behavior during reentrainment using melatonin and supports the notion that the eventual adaptation of the circadian pacemaker to a new time zone is a time-consuming process.  相似文献   

16.
The circadian system is organized in a hierarchy of multiple oscillators, with the suprachiasmatic nucleus (SCN) as the master oscillator in mammals. The SCN is formed by a group of coupled cell oscillators. Knowledge of this coupling mechanism is essential to understanding entrainment and the expression of circadian rhythms. Some authors suggest that light-dark (LD) cycles with periods near the limit of entrainment may be good models for promoting internal desynchronization, providing knowledge about the coupling mechanism. As such, we evaluated the circadian activity rhythm (CAR) pattern of marmosets in LD cycles at lower limits of entrainment in order to study induced internal dissociation. To that end, two experiments were conducted: (1) 6 adult females were under symmetrical LD cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; and (2) 4 male and 4 female adults were under T21 for 24 days followed by 18 days of LL, back to T21 for 24 days, followed by 14 days of LL. The CAR of each animal was continuously recorded. In experiment 1, vocalizations were also recorded. Under Ts shorter than 24 days, a dissociation pattern was observed for CAR and vocalizations. Two simultaneous circadian components emerged, one with the same period as the LD cycle, called the light-entrained component, and the other in free-running, denominated the non-light-entrained component. Both components were displayed in the CAR for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. Our results are in accordance with the multioscillatory nature of the circadian system. Dissociation is partial synchronization to the LD cycle, with at least one group of oscillators synchronized by relative coordination and masking, while another group of oscillators free runs, but is also masked by the LD cycle. Since only T21 promoted the emergence of both circadian components in the circadian rhythms of all marmosets, it was considered the promoter period of circadian rhythm dissociation in this species, and is proposed as a good animal model for forced desynchronization in non-human diurnal primates.  相似文献   

17.
While circadian rhythms of locomotion have been reported in the American lobster, Homarus americanus, it is unclear whether heart rate is also modulated on a circadian basis. To address this issue, both heart rate and locomotor activity were continuously monitored in light-dark (LD) cycles and constant darkness (DD). Lobsters in running wheels exhibited significant nocturnal increases in locomotor activity and heart rates during LD, and these measures were significantly correlated. In DD, most lobsters exhibited persistent circadian rhythms of both locomotion and heart rate. When heart rate was monitored in restrained lobsters in LD and DD, most animals also demonstrated clear daily and circadian rhythms in heart rate. Overall, this is the first demonstration of circadian rhythms of heart rate in H. americanus, the expression of which does not appear to be dependent on the expression of locomotor activity.  相似文献   

18.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129-136, 2000)  相似文献   

19.
American horseshoe crabs (Limulus polyphemus) exhibit clear circadian rhythms of visual sensitivity in the laboratory and in the field they exhibit seasonal patterns of mating behavior that are closely associated with the tides. Recent reports suggest that Limulus locomotor activity may be controlled by endogenous circadian and/or circatidal clocks and that light:dark (LD) cycles may affect the rhythmic output of both of these clocks. In this study, we examined locomotor behavior in the laboratory to determine the extent of this endogenous activity and to examine the influence of LD cycles on these rhythms. Thirty-three L. polyphemus were captured during the breeding season and their activity was monitored with activity boxes and “running wheels” in seawater kept at constant temperature and salinity. Activity patterns were analyzed using visual inspection of actograms and Chi-square and Lomb-Scargle periodograms. Overall, 36% of the animals was significantly more active during L, while only 12% was more active during D (52% showed no preference). Circatidal rhythms were observed in LD in 67% of the horseshoe crabs. Surprisingly, LD cycles appeared to synchronize these rhythms at times. In DD, the majority of animals tested (63%) exhibited circatidal rhythms that persisted for at least seven days. Overall, the results demonstrate that an endogenously controlled tidal rhythm of locomotion operates during, and significantly after, the breeding season in this species. In addition, the present results are consistent with the presence of circalunidian oscillators controlling these rhythms.  相似文献   

20.
The timing of semilunar as well as lunar reproductive rhythms has been analyzed in different geographic populations of the intertidal chironomid Clunio. In stocks of three populations differing in period and phase relationship with the lunar month, these long-term rhythms were synchronized in the laboratory by using artificial moonlight cycles of 30 days in otherwise 24-hr light-dark (LD) cycles (0.4 lux during 4 successive nights every 30 days in LD 12:12). In LD cycles of various periods, a strong synchronization was only possible in LD 12:12 and LD 11:11, whereas in LD 10:10 and LD 15:15 the synchronization by the 30-"day" moonlight cycle was weak or even absent. The study demonstrates a limited range of circadian periods for entrainment of the long-term rhythms. It is concluded that an LD cycle with a period near 24 hr is an essential zeitgeber condition for semilunar and lunar timing in this marine insect. Further, it is suggested that the underlying physiological timing mechanism of Clunio consists of a circadian function for the perception of the monthly moonlight zeitgeber cycles that entrain the endogenous, temperature-compensated oscillator of the circasemilunar (or circalunar) period. The long-term oscillator triggers the metamorphosis of the insect, and thereby determines the time of its eclosion and reproduction on the shorelines, in correlation with days of spring tides recurring about every 14-15 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号