首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six female mice were studied separately for six weeks, first in constant light (300 lx), and then on a 12 : 12 L : D schedule (light on 07:00-19:00-h). Food and water were available ad libitum. Abdominal temperature and spontaneous locomotor activity were measured every 10 min. In constant light, the animals free-ran with both temperature and activity records showing circadian rhythms that were significantly greater than 24 h; by contrast, in the LD schedule, the circadian rhythms had become entrained and showed a stable phase relation to this schedule. The direct masking effects upon raw temperatures caused by bursts of activity were clearly seen, and could be removed by a process of 'purification'. A comparison of the activity profiles during the entrained and free-running phases showed that the imposed light-dark cycle resulted in decreased activity in the light, increased activity in the dark, and bursts of activity at the light-dark and dark-light transitions. Masking effects due to the activity profile were present in the raw temperature profile, and many could be removed by purification using the activity profile; however, there was evidence that other masking effects, independent of activity, were present also. The efficacy of thermoregulatory compensation, as assessed from the rise of core temperature produced by spontaneous locomotor activity, was, in comparison with the free-running condition, increased in the dark phase and decreased in the light phase; this would appear to be one way to limit the temperature rise that occurs in the active phase of the rest-activity cycle.  相似文献   

2.
3.
Summary Dunaliella acidophila is an unicellular green alga which grows optimally at pH 0–1 while maintaining neutral internal pH. A plasma membrane preparation of this algae has been purified on sucrose density gradients. The preparation exhibits vanadatesensitive ATPase activity of 2 mol Pi/mg protein/min, an activity 15 to 30-fold higher than that in the related neutrophilic speciesD. salina. The following properties suggest that the ATPase is an electrogenic plasma membrane H+ pump. (i) ATP induces proton uptake and generates a positive-inside membrane potential as demonstrated with optical probes. (ii) ATP hydrolysis and proton uptake are inhibited by vanadate, diethylstilbestrol, dicyclohexylcarbodiimide and erythrosine but not by molybdate, azide or nitrate. (iii) ATP hydrolysis and proton uptake are stimulated by fussicoccin in a pH-dependent manner as found for plants plasma membrane H+-ATPase. Unusual properties of this enzyme are: (i) theK m for ATP is around 60 M, considerably lower than in other plasma membrane H+-ATPases, and (ii) the ATPase activity and proton uptake are stimulated three to fourfold by K+ and to a smaller extent by other monovalent cations. These results suggest thatD. acidophila possesses a vanadate-sensitive H+-ATPase with unusual features enabling it to maintain the large transmembrane pH gradient.  相似文献   

4.
We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-d-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In contrast, GTPγS was ineffective. We conclude that ATP is the only soluble factor necessary for optimal activity of the NHE-1 isoform of the antiporter. Mg2+ does not appear to be essential for the stimulatory effect of ATP. We propose that two mechanisms mediate the activation of the antiporter by ATP: one requires hydrolysis and is likely an energy-dependent event. The second process does not involve hydrolysis of the γ-phosphate, excluding mediation by protein or lipid kinases. We suggest that this effect is due to binding of ATP to an as yet unidentified, nondiffusible effector that activates the antiporter.  相似文献   

5.
A membrane fraction enriched in plasma membrane (PM) vesicles was isolated from the root cells of a salt-accumulating halophyte Suaeda altissima (L.) Pall. by means of centrifugation in discontinuous sucrose density gradient. The PM vesicles were capable of generating ΔpH at their membrane and the transmembrane electric potential difference (Δψ). These quantities were measured with optical probes, acridine orange and oxonol VI, sensitive to ΔpH and Δψ, respectively. The ATP-dependent generation of ΔpH was sensitive to vanadate, an inhibitor of P-type ATPases. The results contain evidence for the functioning of H+-ATPase in the PM of the root cells of S. altissima. The addition of Na+ and Li+ ions to the outer medium resulted in dissipation of ΔpH preformed by the H+-ATPase, which indicates the presence in PM of the functionally active Na+/H+ antiporter. The results are discussed with regard to involvement of the Na+/H+ antiporter and the PM H+-ATPase in loading Na+ ions into the xylem of S. altissima roots.  相似文献   

6.
Evidence suggests that there is an association between the pathophysiology of depression and a disturbance of circadian rhythms. Accordingly, attention has focused on the possible effects of antidepressants on circadian rhythms. In the present study, we examined the effects of chronic administration of two clinically effective antidepressant agents, imipramine and lithium, on several circadian rhythms in the rat. Activity, core body temperature, and drinking rhythms were assessed in constant darkness (DD) and light-dark (LD) conditions. In DD, lithium significantly lengthened the circadian period of the activity, temperature, and drinking rhythms, while imipramine had no effect. In LD, both drugs significantly delayed the phase of the activity rhythm, but did not change that of the other two rhythms. As a result, the phase-angle differences between the activity and temperature rhythms significantly increased. Neither lithium nor imipramine produced any effect on the resynchronization of these rhythms after an 8-h delay in the LD cycle. These results indicate that although both drugs produced different effects on the circadian period of individual rhythms, both caused a relative phase advance of the temperature rhythm as compared to the activity rhythm, and this effect may be related to the similarity in their antidepressant effects. (Chronobiology International, 13(4), 251-259, 1996)  相似文献   

7.
In leaves of Elodea densa the membrane potential measured in light equals the equilibrium potential of H+ on the morphological upper plasma membrane. The apoplastic pH on the upper side of the leaf is as high as 10.5-11.0, which indicates that alkaline pH induces an increased H+ permeability of the plasmalemma. To study this hypothesis in more detail we investigated the changes in membrane potential and conductance in response to alterations in the external pH from 7 (= control) to 9 or 11 under both light and dark conditions. Departing from the control pH 7 condition, in light and in dark the application of pH 9 resulted in a depolarization of the membrane potential to the Nernst potential of H+. In the light but not in the dark, this depolarization was followed by a repolarization to about -160 mV. The change to pH 9 induced, in light as well as in dark, an increase in membrane conductance. The application of pH 11, which caused a momentary hyper- or depolarization depending on the value at the time pH 11 was applied, brought the membrane potential to around -160 mV. The membrane conductance also increased, in comparison to its value at pH 7, as a result of the application of pH 11, irrespective of the light conditions.  相似文献   

8.
Eukaryotic P-type plasma membrane H+-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H+-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H+-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules.  相似文献   

9.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA enzyme-linked immunosorbent assay - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T.  相似文献   

10.
猪心线粒体Fo的纯化、重建及其质子转运功能   总被引:1,自引:0,他引:1  
比较了猪心线粒体FoF1-ATPase膜部分Fo的四种纯化方法.结果表明,用NaBr从亚线粒体除去FoF1-ATPase的水溶性部分F1-ATPase后,再以CHAPS增溶,并经蔗糖梯度离心,可获得高纯度的Fo.SDS-聚丙烯酰胺凝胶电泳鉴定表明,纯化的Fo含有b、OSCP(寡霉素敏感授予蛋白)、d、a、e、F6、IF1、A6L和c等9种亚基.用去污剂稀释法将纯化的Fo在脂质体上重建后,重建Fo表现较高的被动转运质子活性.这为在体外深入研究Fo的活性、构象与膜脂的关系,以及Fo与F1-ATPase的组装等提供了很好的实验模型.  相似文献   

11.
The period (~3-5 min) of the ultradian rhythm of the lateral leaflet movement of Desmodium motorium is strongly lengthened (≤30-40%) by the K+ channel blocker tetraethylammoniumchloride (20, 30, and 40 mM) and vanadate (0.5 and 1 mM), which is an effective inhibitor of the plasma membrane-bound H+ pump. The alkali ions K+, Na+, Rb+, and Cs+ (10-40 mM) shorten the period only slightly (≤ 10–15%). Li+ (5-30 mM), however, increases the period of the leaflet rhythm drastically (≤80%). We concluded that the plasmalemma-H+-ATP-ase-driven K+ transport through K+ channels is an essential component of the ultradian oscillator of Desmodium, as has been proposed for the circadian oscillator.  相似文献   

12.
The effect of an in vivo and in vitro treatment with cadmium on transport activities of root plasma membrane enriched vesicles was studied in oat (Avena sativa L. cv. Argentina) plants. Addition of 100 mumol/L CdSO4 to nutrient solution decreases both proton transport activity and ATPase activity to the same level. In vitro experiments show that cadmium seems to have a differential inhibiting effect on proton transport activity and ATPase activity, the most pronounced one on ATP-dependent H(+)-accumulation, suggesting that cadmium would interfere with membrane permeability properties. This is indeed the case. The results demonstrate that cadmium decreases passive permeability to protons.  相似文献   

13.
A fraction of inside-out membrane vesicles enriched in plasma membranes (PM) was isolated from Dunaliella maritima cells. Attempts were made to reveal ATP-driven Na+-dependent H+ efflux from the PM vesicles to external medium, as detected by alkalization of the vesicle lumen. In parallel experiments, ATP-dependent Na+ uptake and electric potential generation in PM vesicles were investigated. The alkalization of the vesicle lumen was monitored with an impermeant pH-sensitive optical probe pyranine (8-hydroxy-1,3,6-pyrenetrisulfonic acid), which was loaded into vesicles during the isolation procedure. Sodium uptake was measured with 22Na+ radioactive label. The generation of electric potential in PM vesicles (positive inside) was recorded with a voltage-sensitive probe oxonol VI. Appreciable Na+-and ATP-dependent alkalization of vesicle lumen was only observed in the presence of a protonophore CCCP (carbonyl cyanide-chlorophenylhydrazone). In parallel experiments, CCCP accelerated the ATP-dependent 22Na+ uptake and abolished the electric potential generated by the Na+-ATPase at the vesicle membrane. A permeant anion NO? 3 accelerated ATP-dependent 22Na+ uptake and promoted dissipation of the electric potential like CCCP did. At the same time, NO? 3 inhibited the ATP-and Na+-dependent alkalization of the vesicle lumen. The results clearly show that the ATP-and Na+-dependent H+ efflux from PM vesicles of D. maritima is driven by the electric potential generated at the vesicle membrane by the Na+-ATPase. Hence, the Na+-transporting ATPase of D. maritima carries only one ion species, i.e., Na+. Proton is not involved as a counter-ion in the catalytic cycle of this enzyme.  相似文献   

14.
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.  相似文献   

15.
The role of the plasma membrane (PM) H+-ATPase (E.C. 3.6.1.3) in the plants response to salt stress was studied in the perennial leguminosae forage Medicago arborea L. and its close relative Medicago citrina (Font-Quer) Greuter, a species exposed to saline conditions in its original habitat. Plants were solution cultured for 8 days in 1 or 100 mM NaCl. Leaf growth and CO2 assimilation were more inhibited by salt in M. arborea than in M. citrina. Both species were able to osmoregulate, and salt-treated plants maintained turgor potentials, with no differences between species. Contrasting ion distribution patterns showed that M. citrina was able to exclude Na+ from the leaves more selectively, while M. arborea had a greater buildup of leaf blade Na+. Isolation of purified PM and quantification of H+-ATPase protein by Western blot analysis against the 46E5B11D5 or AHA3 antibodies showed an increase in response to salt stress in the expanding (92%) and expanded leaves (87%) of M. citrina, while no differences were found in the corresponding leaves of M. arborea. The assay of H+-ATPase specific activity of the two leaf types in salinized M. citrina confirmed this increase, as activities increased with 55% and 104% for the expanded and expanding leaves, respectively, while no significant differences were found for either leaf type of salinized M. arborea. A possible role of the increased expression of the PM H+-ATPase for leaf expansion and ion exclusion in salt-stressed plants is discussed.  相似文献   

16.
Hydrolytic activities of the H+-ATPase were compared for plasma membrane fractions isolated from coleoptile cells of 3-, 4-, and 5-day-old etiolated maize seedlings. The membrane preparations obtained by differential centrifugation were additionally purified in the gradient of sucrose density and in the polyethylene glycol-dextran system. The highest level of ATP-hydrolyzing activity was observed in the plasmalemma fraction obtained from 4-day-old seedlings. The pattern of age-dependent changes in H+-ATPase activity of the plasma membranes was clearly different from the monotonic deceleration of coleoptile cell elongation in the period examined. It is supposed that changes in ATPase activity reflect different regulatory roles of this principal ion-transporting enzyme of the plasma membrane at the stage of cell elongation and at a later developmental stage when the coleoptile has completed its physiological function.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 566–572.Original Russian Text Copyright © 2005 by Rudashevskaya, Kirpichnikova, Shishova.  相似文献   

17.
The authors developed a method useful for home measurement of temperature, activity, and sleep rhythms in infants under normal-living conditions during their first 6 mos of life. In addition, parametric and nonparametric tests for assessing circadian system maturation in these infants were compared. Anthropometric parameters plus ankle skin temperature and activity were evaluated in 10 infants by means of two data loggers, Termochron iButton (DS1291H, Maxim Integrated Products, Sunnyvale, CA) for temperature and HOBO Pendant G (Hobo Pendant G Acceleration, UA-004-64, Onset Computer Corporation, Bourne, MA) for motor activity, located in special baby socks specifically designed for the study. Skin temperature and motor activity were recorded over 3 consecutive days at 15 days, 1, 3, and 6 mos of age. Circadian rhythms of skin temperature and motor activity appeared at 3 mos in most babies. Mean skin temperature decreased significantly by 3 mos of life relative to previous measurements (p?=?.0001), whereas mean activity continued to increase during the first 6 mos. For most of the parameters analyzed, statistically significant changes occurred at 3–6 mos relative to 0.5–1 mo of age. Major differences were found using nonparametric tests. Intradaily variability in motor activity decreased significantly at 6 mos of age relative to previous measurements, and followed a similar trend for temperature; interdaily stability increased significantly at 6 mos of age relative to previous measurements for both variables; relative amplitude increased significantly at 6 mos for temperature and at 3 mos for activity, both with respect to previous measurements. A high degree of correlation was found between chronobiological parametric and nonparametric tests for mean and mesor and also for relative amplitude versus the cosinor-derived amplitude. However, the correlation between parametric and nonparametric equivalent indices (acrophase and midpoint of M5, interdaily stability and Rayleigh test, or intradaily variability and P1/Pultradian) despite being significant, was lower for both temperature and activity. The circadian function index (CFI index), based on the integrated variable temperature-activity, increased gradually with age and was statistically significant at 6 mos of age. At 6 mos, 90% of the infants' rest period coincided with the standard sleep period of their parents, defined from 23:00 to 07:00?h (dichotomic index I?<?O; when I?<?O?=?100%, there is a complete coincidence between infant nocturnal rest period and the standard rest period), whereas at 15 days of life the coincidence was only 75%. The combination of thermometry and actimetry using data loggers placed in infants' socks is a reliable method for assessing both variables and also sleep rhythms in infants under ambulatory conditions, with minimal disturbance. Using this methodological approach, circadian rhythms of skin temperature and motor activity appeared by 3 mos in most babies. Nonparametric tests provided more reliable information than cosinor analysis for circadian rhythm assessment in infants. (Author correspondence: )  相似文献   

18.
In Nicotiana plumbaginifolia, plasma membrane H+-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the β-glucuronidase (gusA) reporter gene. pNpPMA5gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H+-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H+-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H+-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H+-ATPase regulatory domain and raises the question whether this isoform is still regulated. The genomic and cDNA nucleotide sequences of NpPMA5 have been deposited into the Genbank database (AY772462–AY772468).  相似文献   

19.
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward ‘reverse engineering’ of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual ‘mindset’ of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the ‘communication’ evident between the plasma membrane and tonoplast of the guard cell.  相似文献   

20.
We studied the effects of high temperature and paraquat on the rate of lipid peroxidation and activity of the H+-ATPase in the plasmalemma fraction isolated from pea leaves. We demonstrated a heat-induced increase in both indices. When lipid-peroxidation was inhibited by pretreatment with butylated hydroxytoluene, a synthetic antioxidant, the H+-ATPase activity increased to a lesser extent than after heat shock without pretreatment. Treatment of plants with paraquat, a prooxidant causing an oxidative stress, resulted in a dramatic increase in lipid peroxidation and H+-ATPase activity. We suggested that the enhanced lipid peroxidation could be one of the causes for the H+-ATPase activation in the plasmalemma under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号