首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this study, we have demonstrated that 2-[125I]-iodomelatonin binds specifically to rat ovarian granulosa cell (GC) membranes with high affinity (KD=83 pM; Bmax=3.28 fmol/mg protein). Using immunoblot analysis and an anti-mt1 melatonin receptor antibody, we have also detected mt1 melatonin receptors in rat ovary. Because melatonin has been reported to alter the steroidogenic responses of ovarian tissues to gonadotropins, a physiological role for intra-ovarian melatonin may exist. Thus, in order to investigate a possible intra-ovarian role for melatonin, we have used both an in vivo and in vitro model of follicular development. Treatment of immature (day 21) female rats with estradiol (E; 0.2 mg/d x 3 d; subcutaneous) was used to induce follicular growth. Membranes from both untreated (U) and E-treated animals' ovaries contained high-affinity 2-[125I]-iodomelatonin (I-MEL) binding sites (Kd=83 and 23 pM, respectively). Estradiol treatment in vivo caused a significant decrease (P<0.05) in binding of 2-[125I]-iodomelatonin to ovarian membranes with untreated animals' ovaries having a Bmax=3.28 fmol/mg protein vs. estradiol-treated animals' ovaries having a Bmax=0.92 fmol/mg protein. In addition, following Estradiol treatment, mt1 melatonin receptors in rat ovary were down-regulated (approximately 95%) using immunoblot analysis. Granulosa cells isolated from E-treated rats were further matured in vitro with testosterone (T) and the pituitary gonadotropin follicle-stimulating hormone (FSH). Granulosa cells were cultured with either T (10 ng/ml) or FSH (5.71 ng ovine FSH-20/ml) alone, or both FSH and T for 48 h. There was no statistically significant specific binding of 2-[125I]-iodomelatonin to GC membranes cultured with T or FSH alone. However, following a 48-h exposure to FSH and T in vitro specific 2-[125I]-iodomelatonin binding occurred with total 2-[125I]-iodomelatonin binding =3.15 [corrected] fmol/mg protein. Therefore, the existence of hormonally-regulated expression of high-affinity melatonin binding sites suggests that melatonin may have an important intra-ovarian physiological role.  相似文献   

2.
Specific binding sites for 2-[125I] iodomelatonin, a selective radiolabeled melatonin receptor ligand, were detected and characterized in rat adrenal membranes. Saturation studies demonstrated that 2-[125I]iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 541 pM and a total binding capacity (Bmax) of 3.23 fmol/mg protein. Competition experiments revealed that the relative order of potency of compounds tested was as follows: 6-chloromelatonin greater than 2-iodomelatonin greater than melatonin greater than 5-methoxytryptamine greater than 5-methoxytryptophol. The highest density of binding sites was found in membranes from nuclear (0.76 fmol/mg protein) and mitochondrial (1.82 fmol/mg protein) subcellular fractions.  相似文献   

3.
The characteristics of the binding sites labeled by the radioligand 2-[125I]iodomelatonin were compared in chicken neuronal retina and retinal pigment epithelium (RPE). Specific binding of 2-[125I]iodomelatonin in both sites was stable, saturable, reversible, and of high affinity. Scatchard analysis revealed an affinity constant (KD) of 446 +/- 55 pM and a total number of binding sites (Bmax) of 25.4 +/- 2.2 fmol/mg of protein for neuronal retina. For RPE the KD was 34.1 +/- 2.2 pM and the Bmax 59.5 +/- 5.2 fmol/mg of protein. Competition experiments with various melatonin analogues gave the following order of affinities: 2-iodomelatonin greater than 2-chloromelatonin greater than melatonin greater than 6-chloromelatonin greater than 6-hydroxymelatonin greater than N-acetylserotonin greater than 6-methoxyharmalan greater than 5-hydroxytryptamine. Linear regression of log Ki values from neuronal retina and RPE gave a highly significant correlation (r = 0.994, n = 8; p less than 0.001). GTP inhibited specific binding to RPE membranes in a concentration-dependent manner, but not in neuronal retinal membranes. The present results strongly suggest that a single type of melatonin receptor is found in neuronal retina and RPE, and that the site in RPE is coupled to a guanine nucleotide-binding regulatory protein (G protein), but that in neuronal retina is not.  相似文献   

4.
M Laudon  N Zisapel 《FEBS letters》1991,288(1-2):105-108
N-Bromoacetyl-2-iodo-5-methoxytryptamine (BIM), a novel derivative of the biologically active melatonin analog, 2-iodomelatonin, was prepared and used to identify melatonin binding proteins in rat brain synaptosomes. Incubation of the synaptosomes with BIM resulted in a time and concentration dependent, irreversible inhibition of 2-[125I]iodomelatonin binding. In parallel, the radioactive form of BIM, N-bromoacetyl-2-[125I]iodo-5-methoxytryptamine ([125I]BIM) became incorporated into the synaptosomes. The incorporation of [125I]BIM was inhibited by BIM, 2-iodomelatonin and melatonin but not by 5-methoxytryptamine or N-acetyl serotonin. [125I]BIM became covalently attached to three polypeptides with apparent molecular weight values of 92, 55 and 45 kDa; the labeling of all three proteins was markedly inhibited by melatonin. These results indicate that the 92, 55 and 45 kDa polypeptides are melatonin binding proteins.  相似文献   

5.
Specific melatonin binding sites were localized in the mammalian retina using the selective radioligand 2-[125I]iodomelatonin. Frozen sections obtained from both pigmented and albino rabbit eyes and albino mouse eyes were incubated with 2-[125I]iodomelatonin in the absence and presence of competing agents. In eyecups from albino rabbits, the highest density of specific 2-[125I]iodomelatonin binding sites was localized over the inner plexiform layer. Approximately 40-60% of the binding was specific, as determined with both the agonist 6-chloromelatonin and the antagonist luzindole. A high density of binding sites was observed over the choroid and retinal pigmented epithelium, but no statistical difference between total and nonspecific binding was detected. Results were similar with eyecups from pigmented rabbits. Albino mice showed a significant extent of 2-[125I]iodomelatonin binding in both the inner plexiform and the outer and inner segment layers. The specific binding of 2-[125I]iodomelatonin in retinas from albino rabbits maintained in the light for 24 h before decapitation was increased in the inner retina compared with the control. The distribution of 2-[125I]iodomelatonin binding sites in the various layers of the mammalian retina is consistent with the described functions for this hormone in retinal physiology.  相似文献   

6.
Pharmacology and function of melatonin receptors   总被引:13,自引:0,他引:13  
M L Dubocovich 《FASEB journal》1988,2(12):2765-2773
The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. In summary, the recent advances in the pharmacological characterization of melatonin receptors in the central nervous system will further stimulate the search for potent and selective melatonin receptor agonists and antagonists, and should aid in our understanding of the mechanism of action of melatonin in mammalian brain.  相似文献   

7.
N-(Arylcyclopropyl)acetamides and N-(arylvinyl)acetamides or methyl ureas have been prepared as constrained analogues of melatonin. The affinity of these new compounds for chicken brain melatonin receptors and recombinant human MT1 and MT2 receptors was evaluated using 2-[125I]-iodomelatonin as radioligand. Strict ethylenic or cyclopropyl analogues of the commercialized agonist agomelatine (Valdoxan®) were equipotent to agomelatine in binding bioassays. However, the ethylenic analogue was more effective than the cyclopropyl one in the melanophore aggregation bioassay, but was still less potent than the disubstituted 2,7-dimethoxy-naphtalenic compounds.  相似文献   

8.
A M Poon  S F Pang 《Life sciences》1992,50(22):1719-1726
2-[125I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8 +/- 4.12 pmol/l and binding site density (Bmax) of 0.69 +/- 0.082 fmol/mg protein at mid-light (n = 10). There was no significant change in the Kd (41.8 +/- 3.16 pmol/l) or the Bmax (0.58 +/- 0.070 fmol/mg protein) at mid-dark (n = 10). Kinetic analysis showed a Kd of 23.13 +/- 4.81 pmol/l (mean +/- SE, n = 4), in agreement to that derived from the saturation studies. The 2-[125I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than N-acetylserotonin, 6-hydroxymelatonin greater than 5-methoxytryptamine, 5 methoxytryptophol greater than serotonin, 5-methoxyindole-3-acetic acid greater than 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan greater than tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction (65.5%), the rest are distributed in the microsomal fraction (17.4%), mitochondrial fraction (14.7%) and cytosolic fraction (0.3%). The demonstration of 2-[125I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system.  相似文献   

9.
Abstract

We have investigated the binding characteristics of rat [125I] adrenomedullin (AM) and human [125I] calcitonin gene-related peptide (CGRP) to membranes prepared from a number of porcine tissues including atrium, ventricle, lung, spleen, liver, renal cortex and medulla. These membranes displayed specific, high affinity binding for [125I] rat AM and [125I] human CGRP. Porcine lung displayed the highest density of binding sites for radiolabeled AM and CGRP followed by porcine renal cortex. Competition experiments performed with [125I] rat AM indicated that the rank order of potencies of various peptides for inhibiting [125I] rat AM binding to various tissues were rat AM ≥ human AM ≥ human AM(22–52) > hαCGRP ≥ hαCGRP(8–37) <<<< sCT except spleen, atrium, renal cortex and renal medulla where rAM and hAM were 20–300 fold more potent than hAM(22–52). When the same experiments were performed using [125I] hαCGRP as the radioligand, the rank order potencies for various peptides were rAM = hAM > hαCGRP > hαCGRP(8–37) in most of the tissues except in spleen and liver. where hαCGRP was the most potent ligand. In lung, hαCGRP was almost as potent as rAM and hAM in displacing [125I] hαCGRP binding. These data suggest the existence of distinct CGRP and AM specific binding sites in contrast to previous reports that showed that both peptides interact differently in rat tissues.  相似文献   

10.
Several manipulations that affect G protein/receptor coupling also alter the binding of [125I]iodocyanopindolol ([125I]ICYP)±cyanopindolol (±CYP) to rat brain 5-HT1B binding sites in radiologand binding assays. Inclusion of 5 mM MgSO4 in these assays results in a small but significant increase in the affinity of [125I]ICYP (fromK D=0.046 nM toK D=0.037 nM). In contrast, 100 M Gpp(NH)p, GTP, or GDP reduce [125I]ICYP affinity (K D=0.056 nM with GTP) while ATP and GMP are less effective.±CYP affinity for 5-HT1B sites labeled by [3H]dihydroergotamine ([3H]DE) also displays a small but significant reduction (from Ki=1.4 nM to Ki=3.5nM) by the inclusion of 100 M GTP. Pre-treatment of the brain membranes with N-ethylmaleimide (NEM) in concentrations known to inactivate many G proteins reduces 5-HT1B specific binding of [125I]ICYP. The NEM induced reduction in [125I]ICYP binding can be reversed by reconstitution with purified exogenous G proteins (Go and Gi), demonstrating directly that high affinity binding of [125I]ICYP to 5-HT1B sites is dependent on G proteins. The effects of Mg2+ ion, guanine nucleotides, NEM and G protein reconstitution on [125I]ICYP and ±CYP binding are all hallmarks of agonist binding to G protein linked receptors. The effect of GTP, however, is quantitatively much less for the binding of these pindolol derivatives than for the binding of 5-HT, a presumed full agonist at 5-HT1B sites. The relatively slight stabilization of [125I]ICYP and ±CYP binding conferred by G protein/5-HT1B receptor interaction may reflect the molecular events underlying previous observations that these compounds are partial 5-HT1B agoinists.  相似文献   

11.
Binding of 2-[125I]iodomelatonin to 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS)-solubilized sites from chick forebrain was rapid. reversible, saturable, of high affinity, and of pharmacological selectivity. Scatchard analyses showed that 2-[125I]iodomelatonin binds to a single site with equilibrium dissociation constant (KD) values of 328 +/- 22 (n = 4) and 302 +/- 26 pM (n = 3) and a maximal number of binding sites (Bmax) of 36.2 +/- 2.0 and 49.5 +/- 6.6 fmol/mg of protein in solubilized and membrane fractions, respectively. The KD values obtained from the ratio of kinetic constants (k2/k1) in solubilized and membrane preparations were 228 and 216 pM, respectively. Inhibition studies indicated the following order of pharmacological affinities for both membrane and solubilized sites: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than prazosin greater than N-acetylserotonin much greater than serotonin greater than metergoline greater than ketanserin greater than propranolol greater than phentolamine greater than cyproheptadine. Guanyl nucleotides inhibited binding of 2-[125I]iodomelatonin to solubilized and membrane fractions, by converting binding sites from a high-affinity to a low-affinity state. These findings show that solubilized binding sites for melatonin exhibit the specific binding and pharmacological characteristics present in membrane-bound sites. Moreover, the retention of sensitivity to guanine nucleotides in fractions solubilized with CHAPS suggests that this solubilization procedure is suitable for further studies aimed at the isolation, purification, and molecular characterization of active melatonin binding sites.  相似文献   

12.
A series of chaclone derivatives containing an indole moiety were evaluated in competitive binding assays with Aβ1-42 aggregates versus [125I]IMPY. The affinity of these compounds ranged from 4.46 to >1008 nM, depending on the substitution on the phenyl ring. Fluorescent staining in vitro showed that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of AD transgenic mice. The radioiodinated probe [125I]-(E)-3-(1H-indol-5-yl)-1-(4-iodophenyl)prop-2-en-1-one, [125I]4, was prepared and autoradiography in sections of brain tissue from an animal model of AD showed that it labeled Aβ plaques specifically. However, experiments with normal mice indicated that [125I]4 exhibited a low uptake into the brain in vivo (0.41% ID/g at 2 min). Additional chemical modifications of this indole-chalcone structure may lead to more useful imaging agents for detecting β-amyloid plaques in the brains of AD patients.  相似文献   

13.
Abstract: Melatonin and 5-methoxytryptamine inhibited forskolin-stimulated cyclic AMP formation in cultured neural cells prepared from embryonic chick retina. Both methoxyindoles exhibited similar potency and efficacy, with EC50 values of 0.8 n M for melatonin and 7.2 n M for 5-methoxytryptamine. Inhibition of cyclic AMP formation by 5-methoxytryptamine or melatonin was prevented by pretreatment with pertussis toxin. Pretreatment of cultures with 5-methoxytryptamine for 24 h reduced the subsequent inhibitory cyclic AMP response to 5-methoxytryptamine but not that to 2-iodomelatonin. Putative melatonin receptors on cultured retinal cells were labeled with 2-[125I]iodomelatonin. Melatonin displaced specific 2-[125I]iodomelatonin with a K i value (0.8 n M ) similar to the EC50 for inhibition of cyclic AMP formation. In contrast, 5-methoxytryptamine only inhibited 2-[125I]iodomelatonin binding at very high concentrations ( K i = 650 n M ). Pretreating cultured cells for 24 h with 2-iodomelatonin or melatonin, but not with 5-methoxytryptamine, reduced subsequent 2-[125I]iodomelatonin binding. Thus, 5-methoxytryptamine appears to inhibit forskolin-stimulated cyclic AMP formation at a site distinct from the 2-iodomelatonin binding site.  相似文献   

14.
1. A series of novel opiate ligands based upon 6α-naloxamine have been examined in opioid receptor binding assays.2. Coupling an ethylamine spacer alone to 6-α-naloxamine gave a compound with relatively poor affinity for mu opioid receptors compared to naloxone, although it retained high affinity for kappa1 opioid receptors. Coupling a benzoyl group significantly increased the affinity. The presence at the 4-position of the benzoyl moiety of an amino-(NalAmiBen) or an azido-substituent (NalAziBen) did not significantly effect the affinity at mu receptors. However, iodinating the benzoyl moiety at the 3-position increased the affinity of the derivatives.3. Two compounds were radiolabeled and evaluated in receptor binding assays. Both radioligands labeled sites in CHO cells stably transfected with the mouse MOR-1 clone. The amino coupound [125I]NalAmiBen and the azido derivative [125I]NalAziBen reversibly bound to membranes from CHO cells transfected with MOR-1 with high affinity in the dark. Exposure of [125I]NalAmiBen to UV did not alter the reversibility of binding, but exposure of [125I]NalAziBen to UV light led to the covalent coupling of the radioligand to the receptor. When run on SDS-PAGE, [125I]NalAziBen binding showed a band at approximately 70–80 kDa. A control corresponding to nonspecific binding failed to reveal any labeling. No bands were observed from membranes labeled with [125I]NalAmiBen.  相似文献   

15.
16.
Binding sites for calcitonin and calcitonin gene-related peptide are widely distributed in the central nervous system. In this study, binding of [125I]-alpha-rat calcitonin gene-related peptide and [125I]-salmon calcitonin in adjacent sections of rat brain revealed clearly distinct patterns of binding in most regions although in some restricted areas such as parts of the ventral striatum, including the nucleus accumbens, there was some overlap in the patterns of binding. In the primary olfactory cortex, which bound only calcitonin gene-related peptide, salmon calcitonin was very weak in inhibiting the binding of calcitonin gene-related peptide. In the nucleus accumbens, high affinity binding of calcitonin and calcitonin gene-related peptide at their homologous receptors was observed, with affinity constants for calcitonin and calcitonin gene-related peptide of 1.4 × 109 M−1 and 1.2 × 109 M−1 respectively. Cross competition studies in this nucleus demonstrated that salmon calcitonin was able to compete for [125I]-rat calcitonin gene-related peptide labelled sites with high affinity, with an affinity constant of 0.8 × 109 M−1. However, rat calcitonin gene-related peptide was less potent in inhibiting the binding of [125I]-salmon calcitonin labelled sites with only 28% inhibition at 10−6M. Further characterization of the calcitonin sensitive calcitonin gene-related peptide labelled sites demonstrated that a range of calcitonin analogs inhibited the binding of [125I]-rat calcitonin gene-related peptide with the same order of potency as the analogs competed for [125I]-salmon calcitonin labelled sites. Digital substraction mapping revealed calcitonin-sensitive calcitonin gene-related peptide binding sites over parts of the ventral striatum, including mid-caudal nucleus accumbens and fundus striati; over the lateral border of the lateral bed nucleus of the stria terminalis; part of the central amygdaloid nucleus; the organum vasculosum of the lamina terminalis and area postrema and over the wings of the dorsal raphe.These results demonstrate the existence of a new subtype of calcitonin/calcitonin gene-related peptide binding site, which has high affinity for the two otherwise biochemically distinct peptides.  相似文献   

17.
Melatonin is a neurohormone implicated in both biorhythm synchronization and neuroprotection from oxidative stress. Its functions are mediated by two G-protein-coupled-receptors (MT1 and MT2) and MT3, which corresponds to quinone oxidoreductase 2 (QR2). To determine the binding site of QR2 for melatonin, point mutations of residues crucial for the enzymatic activity of hQR2 were performed. The substitution of the hydrophobic residues Phe126, Ile128 and Phe178 by tyrosines at the active site significantly increased enzymatic activity and decreased the affinity of a structural analog of melatonin, the 2[125I]iodo-MCANAT. The mutation of residues implicated in zinc chelating (His173; His177) had no effect on radioligand binding. Destabilisation of the cofactor FAD by mutation N18E showed that 2[125I]iodo-MCANAT binding was closely linked to the conformational integrity of human QR2. Surprisingly, the mutations C222F and N161A, which are distant from the determined binding site of the ligand, increased the affinity of 2[125I]iodo-MCANAT for hQR2. What seems to better explain the binding variations among the mutants are the activity recorded with BNAH and coenzyme Q1. Various hypotheses are discussed based on the various parameters used in the study: nature of the substrates and co-substrates and nature of the amino acid changes. This study, which constitutes the first structural analysis of hQR2, should enable to better understand the biological role of melatonin on this enzyme and particularly, the discrepancies between the pharmacologies of the melatonin binding site (MT3) and the QR2 catalytic activity.  相似文献   

18.
The radioiodinated pindolol analogs 125I-labeled cyanopindolol ([125I]CYP) and 125I-labeled hydroxybenzylpindolol ([125I]HBP) have been used to study binding to human platelet β-adrenergic receptors. [125I]CYP binds to a saturable class of binding sites on platelet membranes with a dissociation constant (Kd) of 14±3 pM and maximal binding capacity (Bmax) of 18±4 fmol/mg protein. Binding of [125I]CYP is reversible and is characterized by forward and reverse rate constants of 1.8·107 s?1·M?1 and 3.8·10?4 s?1, respectively. [125I]HBP binds to a saturable class of platelet membrane sites with a Kd of 50±10 pM and Bmax of 32±6 fmol/mg protein. [125I]HBP also binds to a saturable class of sites on intact platelets with a Kd of 58±14 pM and Bmax of 24±4 molecules per platelet. Binding of [125I]CYP and [125I]HBP is stereospecifically inhibited by propranolol and epinephrine; the (?) stereoisomers are at least 50-times more potent than the (+) stereoisomers. Binding of both radioligands is inhibited by adrenergic ligands with a potency order of propranolol ? isoproterenol > epinephrine > practolol > norepinephrine > phenylephrine. These observations indicate that [125I]CYP and [125I]HBP bind to platelet sites which have the pharmacological characteristics of β-adrenergic receptors but which are not typical of either the β1 or β2 sub-type.  相似文献   

19.
Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (> 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (> 80% for GM10 and T98G cells and > 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Previously, it has been shown that chronic melatonin exposure in MT1-CHO cells results in receptor desensitization while at the same time producing drastic morphological changes. The addition of a depolymerizing agent during the melatonin pretreatment period prevents MT1 receptor desensitization and the changes in cellular morphology. The lack of morphological change in the presence of a depolymerizing agent is easily explained by the inability of the microtubules to polymerize, however, the prevention of receptor desensitization is a little more complex and may involve G-protein activation. The goal of this study was to determine whether melatonin-induced MT1 receptor desensitization is regulated by proteins known to regulate G-protein activation states, beta-tubulin and RGS4,using anti sense knockdown approaches. The expression of RGS4 mRNA in CHO cells was confirmed using RT PCR and successful knockdown of each was confirmed by western blot analysis or quantitative PCR. Pretreatment of MT1-CHO cells, transfected with the nonsense probes and exposed to melatonin, resulted in a desensitization of the receptor, an increase in forskolin-induced cAMP accumulation, an increase in 2-[125I]-iodomelatonin binding and no change in the affinity of melatonin for the MT1 receptor. However, knockdown of either beta-tubulin or RGS4 in MT1-CHO cells followed by pretreatment with melatonin attenuated the desensitization of melatonin receptors, decreased total 2-[125I]-iodomelatonin binding, and did not affect neither the forskolin response nor the affinity of melatonin for the MT1 receptor. Perhaps RGS4 and beta-tubulin modulate Galpha-GDP and Galpha-GTP states thus modulating MT1 melatonin receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号