首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin is known to shift the phase of the locomotor activity rhythm in the field mouse Mus booduga in accordance with a type-I phase response curve (PRC), with phase delays during the subjective day and phase advances during late subjective night and the early subjective day. At CT4 (circadian time 4; i.e. 16 hr. after activity onset) and CT22 of the circadian cycle, a single dose of melatonin (1 mg/kg) is known to evoke maximum delay and maximum advance phase-shifts, respectively. We investigated the dose-dependent responses of the circadian pacemaker of these mice to a single dose of melatonin at the times for maximum delay and maximum advance. The circadian pacemaker responsible for the locomotor activity rhythm in these mice responded to various doses of melatonin in a dose-dependent manner with the magnitude of phase shifts increasing with dose.  相似文献   

2.
Ramelteon, an MT(1)/MT(2) melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90?μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8-CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6?±?0.29?h, n?=?3) and at CT2 phase delays (-3.2?±?0.12?h, n?=?6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7?±?0.15?h, n?=?4, p?相似文献   

3.
Continuous melatonin administration via silastic implants accelerates the resynchronization of the circadian locomotor activity rhythm in house sparrows (Passer domesticus) after exposure to phase shifts of a weak light-dark cycle. Constant melatonin might induce this effect either by increasing the sensitivity of the visual system to a light zeitgeber or by reducing the degree of self-sustainment of the circadian pacemaker. To distinguish between these two possible mechanisms, two groups of house sparrows, one carrying melatonin implants and the other empty implants, were kept in constant dim light and subjected to advance and delay shifts of a 12-h feeding phase. The resynchronization times of their circadian feeding rhythm following the phase shifts were significantly shorter when the birds carried melatonin implants than when they carried empty implants. In a second experiment, melatonin-implanted and control birds were released into food ad libitum conditions 2 days after either a delay or an advance phase shift. The number of hours by which the activity rhythms had been shifted on the second day in food ad libitum conditions was assessed. Melatonin-implanted house sparrows had significantly larger phase shifts in their circadian feeding rhythm than control birds. This is in accordance with the first experiment since a larger phase shift at a given time reflects accelerated resynchronization. Additionally, the second experiment also excludes any possible masking effects of the nonphotic zeitgeber. In conclusion, constant melatonin accelerates resynchronization even after phase shifts of a nonphotic zeitgeber, indicating that constant high levels of melatonin can reduce the degree of self-sustainment of the circadian pacemaker independent of any effects on the photoreceptive system.  相似文献   

4.
In two separate sets of experiments, the phases of the locomotor activity rhythm of the nocturnal field mouse Mus booduga were probed using two light pulses (LPs). In the first set of experiments, the circadian pacemaker underlying the locomotor activity rhythm was perturbed at circadian time 14 (CT 14) using a resetting light pulse LP1 of 1000 lux intensity and 15 min duration. The phases of the resetting pacemaker were then probed at all even CTs between CT 16 and CT 14 using a PRC probing light pulse LP2 of equal strength. The "LP2 PRC" thus obtained was then compared with the single light pulse PRC in terms of the area under delay (D) and advance (A) zones of the PRCs. The time course and waveform of the two LP PRCs suggest that the LP2 PRC resembled the single LP PRC, displaced by 2 h toward the right. The LP1 PRC had smaller D compared to the single LP PRC (p = 0.007), whereas both the PRCs had A of equal magnitude (p = 0.23). This suggests that the pacemaker phase shifts rapidly after LP perturbations. In the second set of experiments, the LP1 was administered at CT 14. The phase of the pacemaker was then perturbed on day 1 (next cycle after LP1) either 2 h after activity onset (at ca. CT 14 of the transient cycle) or 8 h after activity onset (at ca. CT 20 of the transient cycle) using an LP2 of equal strength. It was observed that the steady-state phase shifts evoked by positioning an LP2, 2 h after activity onset, were positively correlated with the phase shifts observed on day 1. The steady-state phase shifts observed, when the LP2 was positioned, 8 h after activity onset, were negatively correlated with the phase shifts observed on day 1. These results suggest that the transient cycles do not mirror the state of the pacemaker oscillator.  相似文献   

5.
ABSTRACT

Melatonin, an essential pineal hormone, acts as a marker of the circadian clock that regulates biological rhythms in animals. The effects of exogenous melatonin on the circadian system of nocturnal rodents have been extensively studied; however, there is a paucity of studies on the phase-resetting characteristics of melatonin in diurnal rodents. We studied the phase shifting effects of exogenous melatonin as a single melatonin injection (1 mg/kg) at various phases of the circadian cycle on the circadian locomotor activity rhythm in the palm squirrel, Funambulus pennantii. A phase response curve (PRC) was constructed. Adult male squirrels (N = 10) were entrained to a 12:12 h light-dark cycle (LD) in a climate-controlled chronocubicle with food and water provided ad libitum. After stable entrainment, squirrels were transferred to constant dark condition (DD) for free-running. Following stable free run, animals were administered a single dose of melatonin (1 mg/kg in 2% ethanol-phosphate buffered saline (PBS) solution) or vehicle (2% ethanol-PBS solution) at circadian times (CTs) 3 h apart to evoke phase shifts. The phase shifts elicited at various CTs were plotted to generate the PRC. A dose response curve was generated using four doses (0.5, 1, 2 and 4 mg/kg) administered at the CT of maximum phase advance. Melatonin evoked maximum phase advances at CT0 (1.23 ± 0.28 h) and maximum phase delays at CT15 (0.31 ± 0.09 h). In the dose response experiment, maximal phase shifts were evoked with 1 mg/kg. In contrast, no significant shifts were observed in control groups. Our study demonstrates that the precise timing and appropriate dose of melatonin administration is essential to maximize the amelioration of circadian rhythm–related disorders in a diurnal model.  相似文献   

6.
A dose response curve for the phase shifting effect of triazolam, a short-acting benzodiazepine commonly prescribed for the treatment of insomnia, on the circadian rhythm of locomotor activity was measured for the golden hamster. A single intraperitoneal injection of triazolam six hours before the onset of wheel-running activity induced a dose-dependent phase advance in the rhythm. A maximum phase advance, which averaged about 100 minutes, was observed in animals injected with 0.5 to 5.0 mg of triazolam. The use of drugs which promote sleep, and induce phase shifts in a central circadian clock, could be important in the treatment of sleep disorders associated with disrupted schedules and of mental and physical disorders associated with abnormal circadian rhythmicity.  相似文献   

7.
CS mice, an inbred strain, showed two distinctive characteristics in the circadian rhythm of locomotor activity: (1) large variation in the freerunning period, and (2) spontaneous rhythm splitting under continuous darkness. In the splitting rhythm there was a positive correlation between the freerunning period of the evening component and the activity time of the morning component. The phase-shifting effect of a 15-min light pulse was examined on the two activity components of the splitting rhythm. There were significant differences in the amount of light-induced phase response between the two components. A light pulse during the late subjective night induced a phase advance shift only in the morning component, while a light pulse during the early subjective night induced a phase delay shift only in the evening component. These results indicate functional diversities of the two activity components in the circadian locomotor rhythm of CS mice, and suggest that the circadian system in CS mice consists of two mutually coupled oscillators which have different circadian periods and different responsiveness to light. The CS mouse is a useful model to explore a genetic background of oscillator coupling in the circadian system of nocturnal rodents. Accepted: 19 November 1998  相似文献   

8.
The effect of exogenous melatonin (1 mg/kg) on light pulse (LP) induced phase shifts of the circadian locomotor activity rhythm was studied in the nocturnal field mouse Mus booduga. Three phase response curves (PRCs: LP, control, and experimental) were constructed to study the effect of co-administration of light and melatonin at various circadian times (CTs). The LP PRC was constructed by exposing animals free-running in constant darkness (DD) to LPs of 100-lux intensity and 15-min duration, at various CTs. The control and experimental PRCs were constructed by using a single injection of either 50% DMSO or melatonin (1 mg/kg dissolved in 50% DMSO), respectively, administered 5 min before LPs, to animals free-running in DD. A single dose of melatonin significantly modified the waveform of the LP PRC. The experimental PRC had significantly larger areas under advance and delay regions of the PRC compared to the control PRC. This was also confirmed when the phase shifts obtained at various CTs were compared between the three PRCs. The phase delays at three phases (CT12, CT14, and CT16) of the experimental PRCs were significantly greater than those of the control and the LP PRCs. Based on these results we conclude that phase shifting effects of melatonin and light add up to produce larger responses.  相似文献   

9.
Exposure to light and darkness can rapidly induce phase shifts of the human circadian pacemaker. A type 0 phase response curve (PRC) to light that has been reported for humans was based on circadian phase data collected from constant routines performed before and after a three-cycle light stimulus, but resetting data observed throughout the entire resetting protocol have not been previously reported. Pineal melatonin secretion is governed by the hypothalamic circadian pacemaker via a well-defined neural pathway and is reportedly less subject to the masking effects of sleep and activity than body temperature. The authors reasoned that observation of the melatonin rhythm throughout the three-cycle light resetting trials could provide daily phase-resetting information, allowing a dynamic view of the resetting response of the circadian pacemaker to light. Subjects (n = 12) living in otherwise dim light (approximately 10-15 lux) were exposed to a noncritical stimulus of three cycles of bright light (approximately 9500 lux for 5 h per day) timed to phase advance or phase delay the human circadian pacemaker; control subjects (n = 11) were scheduled to the same protocols but exposed to three 5-h darkness cycles instead of light. Subjects underwent initial and final constant routine phase assessments; hourly melatonin samples and body temperature data were collected throughout the protocol. Average daily phase shifts of 1 to 3 h were observed in 11 of 12 subjects receiving the bright light, supporting predictions obtained using Kronauer's phase-amplitude model of the resetting response of the human circadian pacemaker. The melatonin rhythm in the 12th subject progressively attenuated in amplitude throughout the resetting trial, becoming undetectable for >32 hours preceding an abrupt reappearance of the rhythm at a shifted phase with a recovered amplitude. The data from control subjects who remained in dim lighting and darkness delayed on average -0.2 h per day, consistent with the daily delay expected due to the longer than 24-h intrinsic period of the human circadian pacemaker. Both temperature and melatonin rhythms shifted by equivalent amounts in both bright light-treated and control subjects (R = 0.968; p<0.0001; n = 23). Observation of the melatonin rhythm throughout a three-cycle resetting trial has provided a dynamic view of the daily phase-resetting response of the human circadian pacemaker. Taken together with the observation of strong type 0 resetting in humans in response to the same three-cycle stimulus applied at a critical phase, these data confirm the importance of considering both phase and amplitude when describing the resetting of the human circadian pacemaker by light.  相似文献   

10.
Single 2h administration of diazepam (benzodiazepine) in 3.5% ethanol solution was found to evoke advance and delay phase shifts in the locomotor activity rhythm in the field mouseMus booduga. Through such pulsed administration of diazepam at various phases of circadian rhythm a phase response curve could be constructed. Phase advance occurred during early subjective day (CT 2) and phase delays were observed in the remaining phases. The shape of the diazepam phase response curve is similar to the general shape of the phase response curves generated by intraperitoneal injections of other benzodiazepines in hamsters. The phase shifting action of diazepam may be explained by its agonistic action on the neurotransmitter gamma-aminobutyric acid.  相似文献   

11.
Recent work in our laboratory has shown that sodium pentobarbital injections can induce phase-dependent phase shifts of the circadian rhythm of locomotor activity with the maximum advance at circadian time (CT) 8 and the maximum delay at CT0 in SK/Nga mice but no phase shifts in C57BL/6 mice. In the present study, the possibility that the differences in the effects of pentobarbital on the circadian rhythm may be due to different contributions of the GABA-ergic system to circadian organization in the two strains was tested by comparing the responses of SK mice with those of C57BL mice to muscimol (2 mg/kg), a GABA receptor agonist, and triazolam (25 mg/kg), which is thought to act by potentiating the action of GABA. The hypothesis that pentobarbital-induced phase shifts of SK mice are mediated by the GABA receptor system was also tested by observing whether the phase-shifting effects of pentobarbital were blocked by bicuculline (0.5 mg/kg), a selective antagonist of GABA, injected 3 min prior to pentobarbital (30 mg/kg). The results indicated that muscimol induced phase advances at CT8 and phase delays at CT0, and triazolam induced phase advances at CT8 in SK mice. No phase shifts were induced by any treatment in C57BL mice. These results suggest that the role of GABA-ergic systems in circadian organization may be different in SK and C57BL mice. In addition, bicuculline could block the phase-shifting effects of pentobarbital in SK mice, suggesting that the GABA receptor system may mediate phase-shifting effects of pentobarbital in SK mice.  相似文献   

12.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781-799, 2001)  相似文献   

13.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781–799, 2001)  相似文献   

14.
The circadian rhythm in rat pineal N-acetyltransferase (NAT) activity, which drives the rhythm in melatonin production, is controlled by a pacemaker located in the suprachiasmatic nucleus of the hypothalamus. As the NAT rhythm has two well-defined phase markers--namely, the time of the evening activity rise and of the morning decline--it is suitable for studies of the entrainment of the pacemaker by environmental light. Phase delays of the NAT rhythm proceed more rapidly than phase advances. One day after a brief light pulse applied before midnight, or after a delay in evening lights-off, or a delay of a light-dark (LD) cycle, phase delays of the evening NAT rise result in almost corresponding delays of the morning NAT decline. Consequently, the NAT rhythm is phase-shifted, but its pattern does not change. One day after a brief light pulse applied past midnight, or after bringing forward morning lights-on, or after an advance of an LD cycle, the morning NAT decline is phase-advanced, but the evening rise is not phase-advanced at all or may even by phase-delayed. Consequently, the phase relationship between the evening NAT activity onset and the morning offset may be compressed considerably, and it may take several transient cycles before phase advances of the morning NAT decline are followed by corresponding advances of the evening NAT rise. Due to the phase-delaying effect of evening light on the NAT rise and to the phase-advancing effect of morning light on the NAT decline, the phase relationship between the NAT rise and the decline is compressed on long days and decompressed on short days. Different phase shifts of the evening NAT rise and of the morning decline, even in opposite directions, are consistent with the hypothesis of a complex, two-component (evening-morning, or E-M) pacemaker controlling the NAT rhythm. As the E-M phase relationship determines duration of the high night melatonin production, and the duration of the nocturnal melatonin pulse may convey information on daylength, the data are consistent with the internal coincidence model for photoperiodic time measurement.  相似文献   

15.
The endogenous circadian rhythm of melatonin in mammals provides information regarding the resetting response of the mammalian circadian timing system in response to the changes in light dark cycle. Photoperiodic changes are reported to have acute and chronic effect on melatonin rhythm. Our aim in present experiment was to study the effect of single light pulse of low intensity on the circadian variation of melatonin in Indian palm squirrel. A short pulse of 5min was given to the animals at 22:55 h on day 16th in natural photoperiodic condition of long day length (LD ~ 13.55:10.05) and melatonin levels were estimated at every 4-h interval on ZT scale on day 17th (DD). Observations suggest that the light pulse given on day 16th suppressed the melatonin level on day 17th (DD). Besides this, it was also found that there was phase delay in the peak value of melatonin. Further, we tested the ability of single melatonin injection on the light pulse induced phase shift of acrophase of melatonin in this species F. pennanti. We injected the single physiological dose of melatonin (25 microgram/100 g body wt.) just 5 min prior to the commencement of light pulse (22:50 h) on day 16 and melatonin levels were estimated on day 17th as above. Injection of melatonin prior to light pulse altered the suppressing and phase shifting effect of light in terms of peak concentration of melatonin in squirrels. Above data may lead us to conclude that the biological clock mechanism controlling circadian rhythm of melatonin in this rodent is in response to the phase shifting effect of light and acute melatonin treatment. Further, we may suggest that single melatonin injection has the capability to entrain melatonin rhythm but a dose dependent study is required to facilitate the suggestion.  相似文献   

16.
The endogenous circadian rhythm of melatonin in mammals provides information regarding the resetting response of the mammalian circadian timing system in response to the changes in light dark cycle. Photoperiodic changes are reported to have acute and chronic effect on melatonin rhythm. Our aim in present experiment was to study the effect of single light pulse of low intensity on the circadian variation of melatonin in Indian palm squirrel. A short pulse of 5min was given to the animals at 22:55 h on day 16th in natural photoperiodic condition of long day length (LD ~ 13.55:10.05) and melatonin levels were estimated at every 4-h interval on ZT scale on day 17th (DD). Observations suggest that the light pulse given on day 16th suppressed the melatonin level on day 17th (DD). Besides this, it was also found that there was phase delay in the peak value of melatonin. Further, we tested the ability of single melatonin injection on the light pulse induced phase shift of acrophase of melatonin in this species F. pennanti . We injected the single physiological dose of melatonin (25 microgram/100 g body wt.) just 5 min prior to the commencement of light pulse (22:50 h) on day 16 and melatonin levels were estimated on day 17th as above. Injection of melatonin prior to light pulse altered the suppressing and phase shifting effect of light in terms of peak concentration of melatonin in squirrels. Above data may lead us to conclude that the biological clock mechanism controlling circadian rhythm of melatonin in this rodent is in response to the phase shifting effect of light and acute melatonin treatment. Further, we may suggest that single melatonin injection has the capability to entrain melatonin rhythm but a dose dependent study is required to facilitate the suggestion.  相似文献   

17.
Light and serotonin were found to cause phase shifts of the circadian neural activity rhythm in the optic lobe of the cricket Gryllus bimaculatus cultured in vitro. The two phase-shifting agents yielded phase-response curves different in shape. Light induced phase delay and advance in the early and late subjective night, respectively, and almost no shifts in the subjective day, whereas serotonin phase-advances the clock during the subjective day and induced delay shifts during the subjective night. The largest phase advance and delay occurred at circadian time 21 and 12, respectively, for light, and circadian time 3 and 18, respectively, for serotonin. Quipazine, a nonspecific serotonin agonist, induced phase advance and phase delay at circadian time 3 and 18, respectively, like serotonin. (±)8-OH-DPAT, a specific 5-HT1A agonist, phase delayed by 2 h at the subjective night, but produced no significant phase shifts at the subjective day. When NAN-190, a specific 5-HT1A antagonist, was applied together with quipazine, it completely blocked the phase delay at circadian time 18, whereas it had no effect on the advance shifts induced by quipazine. The results suggest that the phase dependency of serotonin-induced phase shifts of the clock may be partly attributable to the daily change in receptor type. Accepted: 4 July 1999  相似文献   

18.
Effects of forced sleep-wake schedules with and without physical exercise were examined on the human circadian pacemaker under dim light conditions. Subjects spent 15 days in an isolation facility separately without knowing the time of day and followed a forced sleep-wake schedule of a 23 h 40-min period for 12 cycles, and physical exercise was imposed twice per waking period for 2 h each with bicycle- or rowing-type ergometers. As a result, plasma melatonin rhythm was significantly phase advanced with physical exercise, whereas it was not changed without exercise. The difference in phase was already significant 6 days after the start of exercise. The amplitude of melatonin rhythm was not affected. A single pulse of physical exercise in the afternoon or at midnight significantly phase delayed the melatonin rhythms when compared with the prepulse phase, but the amount of phase shift was not different from that observed in the sedentary controls. These findings indicate that physical exercise accelerates phase-advance shifts of the human circadian pacemaker associated with the forced sleep-wake schedule.  相似文献   

19.
Risperidone is an atypical antipsychotic that is active at multiple dopamine and serotonin receptor subtypes. Based on its high affinity for serotonin receptors, we predicted that it might reset circadian rhythms in a nocturnal rodent. We report temporally differentiated and differential effects of various doses of risperidone on the voluntary locomotor activity rhythm in the Indian field mice, Mus booduga. Risperidone (0.5 mg/kg) elicited phase delays at phases between CT (circadian time) 12 to CT18 and CT0 to CT3, and phase advances at CT6, CT9 and CT21. However, mice injected at CT6 showed maximum advances (1.299 ± 0.286 h), whereas at CT15 showed maximum delays (?1.514 ± 0.312 h). Increasing the dose beyond 0.5 mg/kg at maximally responsive CTs (CT6 and CT15) resulted in progressively smaller but significant shifts. Thus, 0.5 mg/kg is the optimal dose in this species. The fact that risperidone resets the circadian rhythm in a mammal can be extended to clinical studies and used for optimal adjustment of the circadian rhythm in mental disorders. Conversely, risperidone administration for various treatments must be carefully timed to prevent unwanted phase shifts in patients.  相似文献   

20.
The effect of melatonin on the rate of reentrainment after a 6h phase delay and a 6h phase advance in the light-dark (LD) cycle was assayed in the nocturnal field mouse Mus booduga. After a phase delay of 6h in the LD cycle, a single dose of melatonin (1 mg/kg) was administered for three consecutive days at about CT4 (circadian time 4). After a phase advance of 6h in the LD cycle, melatonin was administered for three consecutive days at about CT22. Melatonin was found to accelerate reentrainment in both cases. Melatonin-treated animals took significantly fewer cycles to reentrain compared to vehicle-treated (50% dimethylsulfoxide [DMSO]) and nontreated control animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号