首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study evaluated different macroalgal invasions in the main Mediterranean coastal habitats on hard bottom. Biodiversity, species composition and structure of macroalgal assemblages were compared among non-invaded areas and areas invaded by the Chlorophyta Caulerpa racemosa var. cylindracea and by the turf-forming Rhodophyta Womersleyella setacea in three different habitats: shallow rocky bottom, deep rocky bottom and dead matte of the seagrass Posidonia oceanica. Results showed that alien macroalgae constituted a relevant component of benthic assemblages in invaded areas of the Mediterranean Sea. Assemblages invaded by Womersleyella setacea and Caulerpa racemosa showed lower values of diversity and large differences in the structure and species composition related to non-nvaded assemblages. The species that mostly suffered from invasion were erect species reproducing sexually; moreover, the dominance of W. setacea led to low abundance of native filamentous algae, while C. racemosa colonization seemed particularly threatening for encrusting algae. All the studied habitats appeared highly invasible by alien macroalgae, even if W. setacea appeared more invasive in deeper habitats, while colonization of C. racemosa seemed more serious in shallower habitats; the dead matte of P. oceanica represented a suitable substrate for the spread of both species. Differences among assemblages in different habitats were reduced in invaded areas.  相似文献   

2.
Abstract

Distribution, structure and phenology of Posidonia oceanica meadows along Sicilian coasts are reported. Posidonia beds are frequently found in Sicily, especially along the south-eastern, north-western and western coasts. Leaf surface per shoot is identified as the most important variable among the phenological parameters. The rhizomes annual mean primary production turned out to be among the highest values observed in the Mediterranean Sea. Flowering and fruiting of Posidonia oceanica are frequent and can occur every year.  相似文献   

3.
Human disturbances, such as anchoring and dredging, can cause physical removal of seagrass rhizomes and shoots, leading to the fragmentation of meadows. The introduced green alga, Caulerpa racemosa, is widely spread in the North-West Mediterranean and, although it can establish in both degraded and pristine environments, its ability to become a dominant component of macroalgal assemblages seems greater in the former. The aim of this study was to estimate whether the spread of C. racemosa depends on the intensity of disturbance to the canopy structure of Posidonia oceanica. A field experiment was started in July 2010 when habitat complexity of a P. oceanica meadow was manipulated to simulate mechanical disturbances of different intensity: rhizome damage (High disturbance intensity = H), leaf removal (Low disturbance intensity = L), and undisturbed (Control = C). Disturbance was applied within plots of different size (40 × 40 cm and 80 × 80 cm), both inside and at the edge of the P. oceanica meadow, according to an orthogonal multifactorial design. In November 2011 (16 months after the start of the experiment), no C. racemosa was found inside the seagrass meadow, while, at the edge, the cover of the seaweed was dependent on disturbance intensity, being greater where the rhizomes had been damaged (H) than in leaf removal (L) or undisturbed (C) plots. The results of this study indicate that physical disturbance at the margin of seagrass meadows can promote the spread of C. racemosa.  相似文献   

4.
Abstract. Ecklonia radiata (C. Agardh) J. Agardh kelp beds — a characteristic feature of the nearshore environment along the south‐west Australian coastline — contribute significantly to the coastal biodiversity in temperate Australia, yet, little is known about the organization of these macroalgal assemblages. By compiling existing and new data sets from habitat surveys, we have characterized and compared the structure of kelp‐associated macroalgal assemblages in three regions (Marmion Lagoon, Hamelin Bay and the marine environment neighbouring the Fitzgerald River National Park) across more than 1000 kilometres of the south‐west Australian coastline. 152 macroalgal taxa had been recognized within the three regions and this is in the range of species richness reported from other Australian and African kelp beds. The kelp‐associated algal assemblages were regionally distinct, 66% of all taxa were only found in one region and only 17 taxa were found in all three regions. Adjacent regions shared an additional 13–15 taxa. The regional shifts in assemblage structure were evident in species composition of both canopy and understorey. The organization of assemblages followed a spatial hierarchy where differences in assemblage structure were larger among regions (hundreds of kilometres apart) than among sites within regions (kilometres apart) and differences among sites within region were larger than differences among quadrats within sites (metres apart). Despite this hierarchy each level of nesting contributed approximately the same to total variation in assemblage structure and these spatial patterns were stronger than temporal differences from seasons to 2–3 years. Our results suggest that local and small‐scale processes contribute considerably to heterogeneity in macroalgal assemblages throughout south‐western Australia, and, in particular, our results are consistent with E. radiata exerting a strong influence on macroalgal assemblage structure. Further, our study contradicts the existence of a general south‐west Australian kelp assemblage, although a few species may form the core of E. radiata associations across regions.  相似文献   

5.
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20–46 %) and those degrading with high macroalgal cover (57–82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m?2 h?1 on coral-dominated and 5.3 ± 2.1 g m?2 h?1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser, Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.  相似文献   

6.
Empirical relationships among resilience indicators on Micronesian reefs   总被引:1,自引:0,他引:1  
A process-orientated understanding of ecosystems usually starts with an exploratory analysis of empirical relationships among potential drivers and state variables. While relationships among herbivory, algal cover, and coral recruitment, have been explored in the Caribbean, the nature of such relationships in the Pacific appears to be variable or unclear. Here, we examine potential drivers structuring the benthos and herbivorous fish assemblages of outer-shelf reefs in Micronesia (Palau, Guam and Pohnpei). Surveys were stratified by wave exposure and protection from fishing. High biomass of most herbivores was favoured by high wave exposure. High abundance of large-bodied scarids was associated with low turf abundance, high coral cover, and marine reserves. The remaining herbivores were more abundant in reefs with low coral cover, possibly because space and hence food limitation occur in high-coral-cover reefs. Rugosity had no detectable effect on herbivorous fish abundance once differences in exposure and coral cover were accounted for. At identical depths, high wave exposure was associated with greater volumes (cover × canopy height) of macroalgae and algal turfs, which most likely resulted from high primary productivity driven by flow. In exposed areas, macroalgal cover declined as the acanthurid biomass increased. The volume of algal turfs was negatively associated with coral cover and herbivore biomass. In turn, high coral cover and herbivore biomass are likely to intensify grazing. The density of juvenile corals was variable where macroalgal cover was low but was confined to lower densities where macroalgal cover was high. High coral cover and density of juvenile corals were favoured in sheltered habitats. While a weak positive relationship was found between scarid biomass and juvenile coral density, we hypothesise that high scarid densities may hinder juvenile density through increased corallivory. New hypotheses emerged that will help clarify the role of acanthurids, wave exposure, and corallivory in driving the recovery of Pacific coral communities.  相似文献   

7.
Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter‐trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context‐dependency of the effects of consumer species loss by conducting a 15‐month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat‐dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non‐interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change. Synthesis The roles of species may vary with environmental context, making it difficult to predict how biodiversity loss affects ecosystem functioning across multiple habitats. We tested how natural algal assemblages in two distinct intertidal habitats responded to the removal of different combinations of key consumer species. Despite an initial habitat‐dependent effect of consumer loss, habitat type did not modify the longer‐term responses of algal assemblages to either the identity or number of consumer species removed. Our findings show that, in certain systems, consumer diversity remains a primary driver of ecosystem functioning across widely different environmental contexts.  相似文献   

8.
Invasive epiphyte Lophocladia lallemandii macroalga induces changes in the erect bryozoan Reteporella grimaldii at shallow Posidonia oceanica meadows at a Mediterranean pristine location. Bryozoan densities at noninvaded seagrass plots (88.32 ± 3.11 colonies m−2) are higher than those at invaded plots (13.39 ± 1.09 colonies m−2) with a fourfold decrease in number of colonies. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione peroxidase) and increase in lipid peroxidation malondialdehyde (MDA) [0.80 ± 0.06 nmol/mg prot at Posidonia oceanica plots to 1.08 ± 0.04 nmol/mg prot at L. lallemandii (P < 0.05)] is observed on sessile bryozoans as response to anoxia caused by L. lallemandii. δ13C of bryozoan isotopic composition differed among treatments, covering a broad range (−19.30‰ invaded to −2.84‰ at noninvaded plots), suggesting modification of food sources. Induced shifts of a filter-feeding erect bryozoan by dense algal turfs at invaded seagrasses are demonstrated, highlighting the need to further address interaction across natural communities and alien species invaded systems before further cascade effects are driven.  相似文献   

9.
Arundo micrantha Lam., a reed species from southern Mediterranean area, has found in Sardinia. Its presence represents the first record for Italy and the third one for western Europe. Investigations on distribution and ecology of the Sardinian population have been carried out, with special focusing on synecology of the species. A. micrantha has found in 40 localities mainly distributed along temporary streams and permanent rivers in the central and southern part of the island. Most of Sardinian populations occurs on alluvial soils in Thermomediterranean bioclimatic context. The autonomy of Sardinian phytocoenoses was characterized with the definition of exclusive floristic taxa, biological and chorological elements, and syndinamic relationships with other assemblages. Comparing the community with other reed beds from the Mediterranean basin, a marked floristic differentiation arose between the phytocoenoses characterized by autochthonous Arundo species and those dominated by the invasive Arundo donax. Finally, management activities are proposed to ensure the conservation of this threatened autochthonous plant community in freshwater habitat.  相似文献   

10.
The transition zone between the Mediterranean and Atlantic basins has been extensively addressed in phylogeographical studies of marine species. However, biases exist towards the analysis of highly dispersive species, and there is a higher sampling effort in European coasts compared to North Africa. This may be hindering a detailed understanding of the historical and contemporary processes that shaped patterns of population genetic structure in the region. In the present study, we investigated the phylogeographical and phylogenetic patterns of mitochondrial cytochrome c oxidase subunit I sequences from a species with direct development and low dispersal abilities, Stenosoma nadejda (Rezig, 1989). The study area included 13 localities along the Atlantic and Mediterranean North African coasts, as well as the Alboran Sea. A new Stenosoma species, from the coasts of Algeria and Alboran Island, was discovered. For S. nadejda, phylogeographical analyses revealed three distinct clades: one in the Iberian Atlantic plus the Alboran Sea, one in the western Mediterranean, and another in the Atlantic coast of Africa. Haplotypes from the Alboran Island were more related to those from the western Mediterranean coast (east of the Almeria–Oran Front). Given the strong differentiation, it is probable that this species survived in multiple glacial refugia during the Pleistocenic glaciations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 419–431.  相似文献   

11.
Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.  相似文献   

12.
The recovery capacity of meadows of the Mediterranean seagrass Posidonia oceanica (L.) Delile in an area affected by illegal trawling were assessed after protection by anti-trawling reefs. The differences in vegetative growth between two impacted and two undisturbed localities were tested using growth, shoot balance, aborted branches, and leaf and rhizome production of both plagiotropic and orthotropic rhizomes. The organic matter in sediments, silt clay fraction and light intensity incident on the bottom were also measured in order to evaluate the physical conditions. Environmental and plant variables were measured in three sites placed inside each locality. The vegetative growth was positive in both impacted and control meadows but growth rates were lower in impacted than in control meadows. Average growth, production and shoot balance were greater in plagiotropic rhizomes from undisturbed localities (40.7±1.75 vs. 28.4±1.34 mm/year, 1133±0.06 vs. 708±0.04 mg DW/shoot/year, 1.36±0.08 vs. 0.96±0.06 shoots/year, respectively). Significantly greater values were also found in undisturbed localities for orthotropic rhizomes in terms of shoot balance and rhizome production (0.07±0.01 vs. 0.01±0.003 shoots/shoot/year and 155 vs. 124 mg DW/shoot/year, respectively). Of the physical parameters measured, only light intensity differed significantly between impacted and undisturbed localities. This parameter was 15.5% to 67.6% lower in impacted localities than in undisturbed localities, and this is the factor that causes the retardation of vegetative growth. The results show that recovery of P. oceanica meadows is possible after eliminating the cause of the impact. However, the very low rates of vegetative growth may prolong the time to total recuperation to almost 100 years. Therefore, effective management of P. oceanica meadows should aim to prevent meadow loss.  相似文献   

13.
Coral core records, combined with measurements of coral community structure, were used to assess the long-term impact of multiple environmental stressors on reef assemblages along an environmental gradient. Multiple proxies (luminescent lines, Ba/Ca, δ15N) that reflect different environmental conditions (freshwater discharge, sediment delivery to the nearshore, nutrient availability and transformations) were measured in Porites coral cores collected from nearshore reefs at increasing distance from the intensively agricultural region of Mackay (Queensland, Australia). The corals provide a record (1968–2002) of the frequency and intensity of exposure to terrestrial runoff and fertilizer-derived nitrogen and were used to assess how the present-day coral community composition may have been influenced by flood-related disturbance. Reefs closest to the mainland (5–32 km offshore) were characterized by low hard coral cover (≤10%), with no significant differences among locations. Distinct annual luminescent lines and elevated Ba/Ca values (4.98 ± 0.63 μmol mol−1; mean ± SD) in the most inshore corals (Round Top Island; 5 km offshore) indicated chronic, sub-annual exposure to freshwater and resuspended terrestrial sediment that may have historically prevented reef formation. By contrast, corals from Keswick Island (32 km offshore) indicated episodic, high-magnitude exposure to Pioneer River discharge during extreme flood events (e.g., 1974, 1991), with strongly luminescent lines and substantially enriched coral skeletal δ15N (12–14‰). The reef assemblages at Keswick and St. Bees islands were categorically different from all other locations, with high fleshy macroalgal cover (80.1 ± 7.2% and 62.7 ± 7.1%, respective mean ± SE) overgrowing dead reef matrix. Coral records from Scawfell Island (51 km offshore) indicated little exposure to Pioneer catchment influence: all locations from Scawfell and further offshore had total hard and soft coral cover comparable to largely undisturbed nearshore to middle shelf reefs of the southern Great Barrier Reef.  相似文献   

14.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

15.
In most studies about ant communities, species are grouped into competitive hierarchies where top dominants drive the majority of other species away from resources. Nevertheless, in some ecosystems high ground temperatures may disrupt this hierarchical organization. Other changes in community structure are caused by the arrival of invasive ant species, which rapidly disassemble local communities. We studied the effects of competition and temperature on ant community organization on Surprise Island (New Caledonia). Four different habitats were distinguished: a central plain, a sea shore Argusia shrubland, a dense Scaveola shrub, and an arboreal Pisonia strata. Eight ant species were identified from pitfall traps (seven introduced and only one native species, Pheidole oceanica). Ant assemblages in each habitat had a different ecologically dominant species, and a dominant species in one habitat could be non-dominant and less abundant in another. From interactions at baits, we built a competitive hierarchy where the top dominant species was the native Ph. oceanica. Daily foraging activity rhythms of the different species mostly overlapped. The relationship between bait occupation and ground temperature followed a negative linear pattern at all sites and for most species, except for the relatively thermophilous Monomorium floricola. Indices of co-occurrence in pitfall traps indicated that species co-occurred randomly with respect to one another. Conversely, species appeared to be segregated when we examined co-occurrence at baits at the sites where Ph. oceanica was abundant. Oceanic islands are very susceptible to alien species, but on Surprise Island it seems that the sole native species dominates in some habitats when confronted by invasive species.  相似文献   

16.
Weight–length relationships are presented for 24 species of the western Mediterranean Sea (Spain). These species were selected from samplings made during November 1995. The captures were made by beam trawl in Posidonia oceanica meadows up to depths of 20–22 m.  相似文献   

17.
Aim The aim of this study was to describe the composition, community structure and biogeographical variation of subtidal algal assemblages dominated by the brown alga Cystoseira crinita across the Mediterranean Sea. Location The Mediterranean coast, from Spain (1°25′ E) to Turkey (30°26′ E). Methods Data on the species composition and structure of assemblages dominated by the species C. crinita were collected from 101 sites in nine regions across the Mediterranean Sea. Multivariate and univariate statistical tools were used to investigate patterns of variation in the composition of the assemblages among sites and regions, and to compare these with previously defined biogeographical regions. Linear regressions of species richness versus longitude and versus latitude were also carried out to test previously formulated hypotheses of biodiversity gradients in the Mediterranean Sea. Results The main features characterizing C. crinita‐dominated assemblages across the Mediterranean included a similar total cover of species, a similar cover of C. crinita, and consistency in the presence of the epiphyte Haliptilon virgatum. Biogeographical variation was detected as shifts in relative abundances of species among regions, partly coinciding with previously described biogeographical sectors. A significant positive correlation was found between species richness and latitude, while no significant correlation was detected between species richness and longitude. Main conclusions The patterns of variation in community structure detected among the studied regions reflected their geographical positions quite well. However, latitude seemed to contribute more to the explanation of biological patterns of diversity than did geographical distances or boundaries, which classically have been used to delimit biogeographical sectors. Moreover, the positive correlation between species richness and latitude reinforced the idea that latitude, and possibly temperature as a related environmental factor, plays a primary role in structuring biogeographical patterns in the Mediterranean Sea. The lack of correlation between species richness and longitude contradicts the notion that there is a decrease in species richness from west to east in the Mediterranean, following the direction of species colonization from the Atlantic.  相似文献   

18.
《Aquatic Botany》2005,82(3):210-221
To evaluate genetic differences of Posidonia oceanica (L.) Delile both at smaller (within a meadow) and larger scale (Mediterranean basin), plants of P. oceanica were analyzed by PCR technique and compared using random amplified polymorphic DNA (RAPD) markers. Results were associated to known differences in phenology. At the small-scale level, P. oceanica shoots collected in the bay of Monterosso al Mare (Liguria, NW Mediterranean Sea) showed genetic differences among sampling stations, with a decrease in genetic diversity along an anthropogenic disturbance gradient. At basin level, genetic differences were detected among 11 P. oceanica shoots coming from different regions of the Mediterranean, and transplanted to the Port-Cros National Park (France) between 1989 and 1991: Izmir, Turkey; Athens, Greece; Taranto, Italy; Ischia Island, Italy; Lavezzi, France; Port-Cros, France; Banyuls, France; Palma de Majorca, Balearic Islands, Spain; Marsa Bay, Algiers. By cluster analysis two major Mediterranean groups were distinguished, the Eastern Mediterranean Group (EMG) and the Western Mediterranean Group (WMG). This suggests that eastern and western populations of P. oceanica have diverged during the colonization of the Mediterranean (after near extinction of the Mediterranean biota in the Messinian period, approximately 5.6 million years ago), and have experienced little gene flow between them. Cluster analysis also indicated that previously described phenological differences among P. oceanica populations in different sectors of the Mediterranean are not mere phenotypic responses to different climatic and hydrological conditions but may well have a genetic basis.  相似文献   

19.
The macroalgal assemblages at the low intertidal zone were studied at three localities on the north coast of Spain between 1977 and 2002. Two of these localities were invaded at the end of the 1980s by the brown seaweed Sargassum muticum (Yendo) Fensholt (Phaeophyta, Sargassaceae), whereas the third locality remained free of the invader. In 2002, distinct algal assemblages were noticed in invaded and noninvaded localities. No major changes were detected in the noninvaded locality. Apart from the obvious presence of S. muticum, the changes observed in the invaded localities included a significant reduction in abundance of the previous dominant species (the red alga Gelidium spinosum (S. G. Gmelin) P. C. Silva) as well as an increased number of species and diversity, increased primary productivity, and variations in the seasonal abundance patterns of some species. We speculate that the arrival of S. muticum had a negative effect on the dominant native G. spinosum, probably related to competition for light. This resulted in indirect positive effects on other species of the assemblage (such as Bifurcaria bifurcata R. Ross). Other small epiphytic opportunistic species might also have been benefited from the presence of S. muticum, because the invader has a rich associated epiphytic assemblage.  相似文献   

20.
Species composition and abundance of present rocky shore assemblages at Cap Corse (Corsica, North Western Mediterranean) dominated by the fucalean alga Cystoseira crinita are compared with similar data obtained almost 50 years ago. Fifteen sites at five different localities where dense C. crinita assemblages were present in the past were revisited in June 2007. Possible differences between the two sampling times were investigated, applying various multivariate analysis techniques available in the statistical package PRIMER v.6. Dense assemblages dominated by C. crinita were found at 14 out of the 15 surveyed sites, showing a similar structure and composition to the assemblages studied in the past. PERMANOVA indicated slight differences in species composition and abundances between old and new surveys. These differences can be summarized as a higher abundance of encrusting species (up to 3?times greater cover), and more sciaphilic turf-forming species (3 to 60-fold greater, depending on the species) and Cladophora spp. (20?times greater) in the present study than in the old study. Furthermore, the present assemblages showed a lower abundance of photophilic turf-forming species. These differences could be due to different taxonomic competence between observers, seasonal fluctuations or long-term changes. Assemblages dominated by Cystoseira crinita in Cap Corse were confirmed to be common, as they were found and sampled at 22 new sites around the island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号