首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carex section Acrocystis currently includes 27 taxa in North America. Recent phylogenetic studies have suggested that the North American and some but not all of the Eurasian species form a clade. Relationships and biogeographic patterns among species in this core-Acrocystis group are explored here using nuclear ribosomal (nrDNA) internal transcribed spacer region (ITS) and nrDNA external transcribed spacer region (ETS) sequence data. While maximum parsimony analysis of the ITS and ETS data provides only a moderately resolved branching structure for species relationships within the core-Acrocystis clade, maximum likelihood analysis provides a more resolved hypothesis of relationships in the section. The core-Acrocystis clade consists of a grade of Eurasian and primarily western North American species, with a well-supported clade of only eastern North American species nested within this grade. ITS and ETS types do not coalesce within many species or species complexes. Possible explanations for the non-coalescent nature of ITS and ETS copies in Acrocystis are explored, including lineage sorting, hybridization, and cryptic species.  相似文献   

2.
Molecular phylogenetic analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and the 5.8S gene were used to infer a phylogeny among the ten recognized taxa of Froelichia in North America. Analyses using both maximum parsimony (MP) and maximum-likelihood (ML) depicted a low level of sequence divergence though it was sufficient in most cases to differentiate taxa. Froelichia xantusii, a species restricted to southern Baja California was shown to be the basalmost member of the group subtending three clades. Two of the clades received good bootstrap support in the MP analysis and corresponded to a genetically homogeneous F. interrupta, and a clade comprising the two species F. latifolia and F. texana. A third clade receiving low bootstrap support contained F. floridana, F. gracilis, F. arizonica, and F. drummondii. Species diversity within the genus was centered within the Tamaulipan Brushland region of north-east Mexico and the southern portion of the US state of Texas where taxa from two of the three principal clades occurred, indicating a region of high speciation and diversification within the genus.  相似文献   

3.
There have been few DNA sequencebased studies of phylogenetic relationships within theFestuca-Lolium complex. Here we infer the phylogeny of 31Festuca-Lolium taxa with a dataset of 116 ITS sequences. The results are consistent with previous studies that resolved two majorFestuca clades: one clade of fine fescues and another clade that containsLolium and associatedFestuca species. This study is unique in suggesting a third, basalFestuca clade, but support for the basal position of this group is low. Extensive sampling permitted investigation of the effects of lineage sorting and reticulate events on the evolution of the complex. Roughly half of the taxa show evidence of lineage sorting or reticulation, and the monophyly ofLolium has likely been obscured by reticulate events. Overall, polyploid species harbor higher levels of ITS sequence diversity than diploids; ITS sequence variants may provide clues to the identity of allopolyploid parents.  相似文献   

4.
The phylogenetic utility of chloroplast (atpB-rbcL, petD, rps16, trnL-F) and nuclear (ETS, ITS) DNA regions was investigated for the tribe Spermacoceae of the coffee family (Rubiaceae). ITS was, despite often raised cautions of its utility at higher taxonomic levels, shown to provide the highest number of parsimony informative characters, in partitioned Bayesian analyses it yielded the fewest trees in the 95% credible set, it resolved the highest proportion of well resolved clades, and was the most accurate region as measured by the partition metric and the proportion of correctly resolved clades (well supported clades retrieved from a combined analysis regarded as “true”). For Hedyotis, the nuclear 5S-NTS was shown to be potentially as useful as ITS, despite its shorter sequence length. The chloroplast region being the most phylogenetically informative was the petD group II intron.We also present a phylogeny of Spermacoceae based on a Bayesian analysis of the four chloroplast regions, ITS, and ETS combined. Spermacoceae are shown to be monophyletic. Clades supported by high posterior probabilities are discussed, especially in respect to the current generic classification. Notably, Oldenlandia is polyphyletic, the two subgenera of Kohautia are not sister taxa, and Hedyotis should be treated in a narrow sense to include only Asian species.  相似文献   

5.
The Australasian region contains a significant proportion of worldwide Poa diversity, but the evolutionary relationships of taxa from this region are incompletely understood. Most Australasian species have been placed in a monophyletic Poa subgenus, Poa supersection Homalopoa section Brizoides clade, but with limited resolution of relationships. In this study, phylogenetic relationships were reconstructed for Australasian Poa, using three plastid (rbcL and matK genes and the rpl32‐trnL intergenic spacer) and two nuclear [internal/external transcribed spacer (ITS/ETS)] markers. Seventy‐five Poa spp. were represented (including 42 Australian, nine New Guinean, nine New Zealand and three Australian/New Zealand species). Maximum parsimony, maximum likelihood and Bayesian inference criteria were applied for phylogenetic reconstruction. Divergence dates were estimated using Bayesian inference, with a relaxed clock applied and rates sampled from an uncorrelated log‐normal distribution. Australasian Poa spp. are placed in three lineages (section Brizoides, section Parodiochloa and the ‘X clade’), each of which is closely related to non‐Australasian taxa or clades. Section Brizoides subsection Australopoa is polyphyletic as currently circumscribed. In Australasia, Poa has diversified within the last 4.3 Mya, with divergence dating results broadly congruent with fossil data that record the appearance of vegetation with a prominent grassland understorey or shrubland/grassland mosaic vegetation dating from the mid‐Pliocene. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 523–552.  相似文献   

6.
The phylogenetic relationships within many clades of the Crassulaceae are still uncertain, therefore in this study attention was focused on the “Acre clade”, a group comprised of approximately 526 species in eight genera that include many Asian and Mediterranean species of Sedum and the majority of the American genera (Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Villadia, and Thompsonella). Parsimony and Bayesian analyses were conducted with 133 species based on nuclear (ETS, ITS) and chloroplast DNA regions (rpS16, matK). Our analyses retrieved four major clades within the Acre clade. Two of these were in a grade and corresponded to Asian species of Sedum, the rest corresponded to a European–Macaronesian group and to an American group. The American group included all taxa that were formerly placed in the Echeverioideae and the majority of the American Sedoideae. Our analyses support the monophyly of three genera – Lenophyllum, Thompsonella, and Pachyphytum; however, the relationships among Echeveria, Sedum and the various segregates of Sedum are largely unresolved. Our analyses represents the first broad phylogenetic framework for Acre clade, but further studies are necessary on the groups poorly represented here, such as the European and Asian species of Sedum and the Central and South American species of Echeveria.  相似文献   

7.
The Empis macrorrhyncha group (Diptera: Empididae) from cool to warm temperate areas of South America and Australia is diagnosed and cladistically analysed, and five new species, Empis animosa sp.n. , E. austera sp.n. , E. maculosa sp.n. , E. occidentalis sp.n. and E. pedivillosula sp.n. , are described. Cladistic analysis of 23 adult morphological characters for 14 species of the group generated a single tree of 28 steps (CI = 0.82; RI = 0.93). Monophyly was established on the basis of a single apomorphy, possession of a bilobed cercus of the male hypopygium. Three main clades were inferred: clade 1 included three Patagonian and a single southwestern Australian species; clade 2 included two species from southeastern Australia; clade 3 included a large Patagonian group of five species and a single southeastern Australian species. The E. fulvicollis complex (clade 1) is a sister‐group of the E. macrorrhyncha complex (clades 2 + 3). A provisional historical biogeographic hypothesis is advanced correlating the appearance of the South American and Australian sister lineages with the timing of the break‐up of Gondwana.  相似文献   

8.
Archaeological charcoals from Puritjarra rock shelter provide the first direct information about the vegetation of central Australia during the late Pleistocene and early Holocene. During the late Pleistocene there appears to have been a more open vegetation than today with fewer trees and shrubs, though with many of the taxa that are important in the modern central Australian flora. The persistence of species such as Acacia macdonnelliensis, Callitris glaucophylla and Eucalyptus opaca throughout the time of the last glacial maximum and the presence of appreciable quantities of wood charcoal in the archaeological deposits at this time indicate that the region was not a tree-less steppe even during full glacial aridity. From 13,000 B.P. onwards, acacias are strongly represented in the charcoal assemblage both quantitatively and in terms of the number of species present. Acacia aneura is for the first time a major component of the assemblage indicating that it had by this time become a significant element of the local vegetation. These changes coincide with evidence elsewhere in the Australian arid zone for the onset of wetter conditions in the early Holocene.  相似文献   

9.
Aim To discover the pattern of relationships of areas of endemism for Australian genera in the plant family Rhamnaceae tribe Pomaderreae for comparison with other taxa and interpretation of biogeographical history. Location Australian mainland, Tasmania and New Zealand. Methods A molecular phylogeny and geographic distribution of species within four clades of Pomaderreae are used as a basis for recognition of areas of endemism and analysis of area relationships using paralogy‐free subtrees. The taxon phylogeny is the strict consensus tree from a parsimony analysis of 54 taxa, in four clades, and sequence data for the internal transcribed spacer regions of ribosomal DNA (ITS1‐5.8S‐ITS2) and the plastid DNA region trnL‐F. Results The biogeographical analysis identified five subtrees, which, after parsimony analysis, resulted in a minimal tree with 100% consistency and seven resolved nodes. Three sets of area relationships were identified: the areas of Arnhem and Kimberley in tropical north Australia are related based on the phylogeny of taxa within Cryptandra; the moister South‐west of Western Australia, its sister area the coastal Geraldton Sandplains, the semi‐arid Interzone region and arid Western Desert are related, based on taxa within Cryptandra, Spyridium, Trymalium and Pomaderris; and the eastern regions of Queensland, McPherson‐Macleay, south‐eastern New South Wales (NSW), Victoria, southern Australia, Tasmania and New Zealand are related based on Cryptandra, Pomaderris and Spyridium. Tasmania and NSW are related based entirely on Cryptandra, but the position of New Zealand relative to the other south‐eastern Australian regions is unresolved. Main conclusions The method of paralogy‐free subtrees identified a general pattern of geographic area relationships based on Australian Pomaderreae. The widespread distribution of clades, the high level of endemicity and the age of fossils for the family, suggest that the Pomaderreae are an old group among the Australian flora. Their biogeographical history may date to the early Palaeogene with subsequent changes through to the Pleistocene.  相似文献   

10.
The most economically important group of species in the genus Amaranthus is the A. hybridus species complex, including three cultivated grain amaranths, A. cruentus, A. caudatus, and A. hypochondriacus, and their putative wild progenitors, A. hybridus, A. quitensis, and A. powellii. Taxonomic confusion exists among these closely related taxa. Internal transcribed spacer (ITS) of nuclear ribosomal DNA, amplified fragment length polymorphism (AFLP), and double-primer fluorescent intersimple sequence repeat (ISSR) were employed to reexamine the taxonomic status and phylogenetic relationships of grain amaranths and their wild relatives. Low ITS divergence in these taxa resulted in poorly resolved phylogeny. However, extensive polymorphisms exist at AFLP and ISSR loci both within and among species. In phylogenetic trees based on either AFLP or ISSR or the combined data sets, nearly all intraspecific accessions can be placed in their corresponding species clades, indicating that these taxa are well-separated species. The AFLP trees share many features in common with the ISSR trees, both showing a close relationship between A. caudatus and A. quitensis, placing A. hybridus in the same clade as all grain amaranths, and indicating that A. powellii is the most divergent taxon in the A. hybridus species complex. This study has demonstrated that both AFLP and double-primer fluorescent ISSR have a great potential for generating a large number of informative characters for phylogenetic analysis of closely related species, especially when ITS diversity is insufficient.  相似文献   

11.

We examined the diversity of the photosynthetic dinoflagellate, Symbiodinium, over a 2-year period in two invertebrates from Australia’s Northern Great Barrier Reef: the nudibranch Phyllodesmium lizardensis and an octocoral of the genus Heteroxenia. In years one and two, we used denaturing gradient gel electrophoresis with internal transcribed spacer 2 (ITS2) region amplicons and identified two nearly identical genotypes of clade C (C64 and a variant) in all samples of each species. We examined the secondary structure of both sequences and found that each had predicted ∆G values within the range of stable free energy values for Symbiodinium ITS2 sequences. In year two, we also used real-time quantitative polymerase chain reaction assays (qPCR) with clade-specific internal transcribed spacer 1 primers to determine whether there were cryptic clades (A, B, and/or D) associated with either host in addition to clade C. qPCR revealed that clades B, C, and D were present in all animals of both species and that all but two nudibranch samples also harbored clade A. These findings suggest that there may be more flexibility in this host/symbiont interaction than has previously been assumed.

  相似文献   

12.
Weigela and three species of Diervilla were inferred from nucleotide sequence variation in the internal transcribed spacer (ITS) regions of 18-26S nuclear ribosomal DNA. Phylogenetic trees were obtained using parsimony, distance, and maximum likelihood methods. The ITS phylogenies did not support the monophyly of Weigela, which comprises three major clades. The first clade includes a single species, W. middendorffiana, which is more closely related with American genus, Diervilla. The second clade consisted of a single species, W. maximowiczii, but its relationship to other Weigela species is equivocal. The third one is a strongly supported core clade which contains the remaining Weigela species. Within the core group, W. hortensis exhibits the most distinct ITS sequence type. The hybrid origin of the species from the putative parents, W. florida and W. subsessilis, is not supported. The ITS sequence evidence favors the taxonomic hypothesis proposed by Nakai who recognized four distinct evolutionary lines (Diervilla, Macrodiervilla, Weigelastrum and Weigela). However, recognition of the two sections, Calysphyrum and Weigela was not supported in the ITS phylogenies. Substantial morphological differences between Diervilla and Weigela middendorffiana do not support the morphological stasis concept which has been considered as a general evolutionary mode among the Asian and North American disjunct taxa. Received 27 July 1998/ Accepted in revised form 7 July 1999  相似文献   

13.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   

14.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

15.
Hypotheses of evolutionary relationships among the Australian wild perennial relatives of soybean (Glycine subgenus Glycine) are based largely on patterns of meiotic pairing in intra- and interspecific experimental hybrids. This evidence has indicated a number of genome groupings within the subgenus but has not resolved most phylogenetic relationships. Restriction-endonuclease site variation of chloroplast DNA (cpDNA) within the perennial subgenus is reported here, representing a sampling of approximately 3% of the approximately 150-kilobase plastome. Seven hundred twenty-one unique restriction sites were compared within Glycine using 29 restriction endonucleases; 157 sites varied within the genus. Distance and parsimony methods using these data yielded congruent results, recognizing the existence of three major groups within subgenus Glycine: the species-rich and geographically diverse A clade consisting of G. canescens and related taxa; the B clade, which includes the stoloniferous species; and the C group, containing two species with distinctive curved pods. These results are in general agreement with hypotheses based on genome analysis; inconsistencies involve the inclusion of genetically divergent taxa such as G. falcata in well-supported plastome clades comprised of otherwise interfertile species. Such findings are not unexpected if crossing barriers are considered to be unique features of such anomalous species, paralleling their often numerous morphological and cpDNA autapomorphies. Consideration of cpDNA divergence within the three major clades of subgenus Glycine indicates that the rate of plastome evolution is uncoupled from rates of morphological or ecological diversification.  相似文献   

16.
Previous phylogenetic studies have indicated that Acacia Miller s.l. is polyphyletic and in need of reclassification. A proposal to conserve the name Acacia for the larger Australian contingent of the genus (formerly subgenus Phyllodineae) resulted in the retypification of the genus with the Australian A. penninervis. However, Acacia s.l. comprises at least four additional distinct clades or genera, some still requiring formal taxonomic transfer of species. These include Vachellia (formerly subgenus Acacia), Senegalia (formerly subgenus Aculeiferum), Acaciella (formerly subgenus Aculeiferum section Filicinae) and Mariosousa (formerly the A. coulteri group). In light of this fragmentation of Acacia s.l., there is a need to assess relationships of the non‐Australian taxa. A molecular phylogenetic study of Acacia s.l and close relatives occurring in Africa was conducted using sequence data from matK/trnK, trnL‐trnF and psbA‐trnH with the aim of determining the placement of the African species in the new generic system. The results reinforce the inevitability of recognizing segregate genera for Acacia s.l. and new combinations for the African species in Senegalia and Vachellia are formalized. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 500–523.  相似文献   

17.

The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0–7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine–oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine–oak forest zone. The presence of many conspecific diploid–polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.

  相似文献   

18.
Until recently, Histoplasma capsulatum was believed to harbour three varieties, var. capsulatum (chiefly a New World human pathogen), var. duboisii (an African human pathogen) and var. farciminosum (an Old World horse pathogen), which varied in clinical manifestations and geographical distribution. We analysed the phylogenetic relationships of 137 individuals representing the three varieties from six continents using DNA sequence variation in four independent protein‐coding genes. At least eight clades were idengified: (i) North American class 1 clade; (ii) North American class 2 clade; (iii) Latin American group A clade; (iv) Latin American group B clade; (v) Australian clade; (vi) Netherlands (Indonesian?) clade; (vii) Eurasian clade and (viii) African clade. Seven of eight clades represented genetically isolated groups that may be recognized as phylogenetic species. The sole exception was the Eurasian clade which originated from within the Latin American group A clade. The phylogenetic relationships among the clades made a star phylogeny. Histoplasma capsulatum var. capsulatum individuals were found in all eight clades. The African clade included all of the H. capsulatum var. duboisii individuals as well as individuals of the other two varieties. The 13 individuals of var. farciminosum were distributed among three phylogenetic species. These findings suggest that the three varieties of Histoplasma are phylogenetically meaningless. Instead we have to recognize the existence of genetically distinct geographical populations or phylogenetic species. Combining DNA substitution rates of protein‐coding genes with the phylogeny suggests that the radiation of Histoplasma started between 3 and 13 million years ago in Latin America.  相似文献   

19.
The study aimed at determining the population status of the different Acacia tree species producing gum arabic in the undisturbed, grazed and cultivated habitats in the Karamoja region, Uganda. A total of 135 sample plots each measuring 20 × 20 m2 (0.04 ha) with each habitat having 45 plots were selected and established in the seven counties using a simple random sampling technique. The tree species present, their abundances and sizes were recorded. Twelve Acacia species were identified and a total of 5535 recorded in the sampled area. Out of these, five were gum‐producing acacias. Acacia senegal dominated the acacias in all the seven counties and in all habitats of Karamoja with Acacia nilotica (72.3%), Acacia seyal (13.4%), Acacia sieberiana (4%) and Acacia gerrardii (2.6%). Non‐gum‐producing acacias constituted 7.19% of the total abundance. The tree densities increased with increase in tree size in the undisturbed and grazed habitats but decreased in the cultivated habitat. Most Acacia trees were of large size, an indication of old age and poor regeneration that could affect their future population status. It is recommended that further investigations be carried out into the causes of poor regeneration of Acacia species.  相似文献   

20.
Biological control of invasive Australian acacias will benefit from recent advances in resolving the phylogenetic relationships of Acacia s.l. and Acacia s.s. (“Australian acacias”) within the subfamily Mimosoideae. Some of the phytophage taxa associated with Acacia s.s. display fidelity to a derived clade within the genus. This derived clade contains most of the Acacia s.s. species that have become problematic around the world. Phytophages that are demonstrably restricted to species within the derived clade pose essentially no risk to species outside Acacia s.s.. In contrast, prospective agents able to develop on species in the basal lineages of Acacia s.s. would require more-expansive testing because Acacia s.s. is closely related to the Ingeae, and then sequentially to the genera Acaciella, Mariosousa and Senegalia. Importantly, Vachellia is distantly related to Acacia s.s., being nested in basal Mimoseae lineages, and is thus less likely to be at risk than previously envisaged. Elucidation of these trends shows the benefits of having a comprehensive knowledge of the phylogeny of plants and phytophages under consideration for biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号