首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spider crab Platymaia wyvillethomsoni was reared in the laboratory, from hatching to the megalopal stage at 20°C. The larval development comprises two zoeal stages and a megalopa. The zoeal stages are described for the first time and compared with those of the four known species of the family Inachidae from the northern Pacific. The zoeal characters (carapace spines, antenna, mouthpart appendages, pleon and telson fork) of P. wyvillethomsoni are significantly different from those of two Achaeus species from northern Pacific and other inachid genera (Inachus and Macropodia) from the Atlantic. Therefore, this species should not be placed in the family Inachidae based on zoeal morphology. A provisional key for the identification of known zoeae of the family from the northern Pacific is provided.  相似文献   

2.
3.
4.
Comparative larval morphology was used to elucidate phylogenetic relationships within the Pinnotheridae and the Dissodactylus species complex. Within the family, seven zoeal and six megalopal characters suggested two equally parsimonious phylogenetic hypotheses for pinnotherid larvae, both with Ostracotheres tridacnae representing the sister group for the Dissodactylus complex. Results indicated that the genus Pinnotheres is a polyphyletic taxon, and that the traditional subfamilial arrangement comprises paraphyletic taxa within the subfamilies Pinnotherinae and Pinnothereliinae. Certain evidence has suggested that Fabia and Juxtafubia should be excluded from the Pinnotherinae and placed into the Pinnothereliinae. Larval and adult morphology suggested that Pinnotheres politus should be included within Tumidotheres. The phylogenetic analysis within the Dissodactylus complex involved one zoeal and 16 megalopal characters. Results suggested a single phylogenetic hypothesis based on larval morphology. Combining adult morphology with larval evidence resulted in two equally parsimonious phylogenetic hypotheses, one of which agreed with a previously suggested hypothesis based only on adult characters.  相似文献   

5.
6.
ABSTRACT

Metamorphosis season of megalopae to the first crab stage in snow crab Chionoecetes opilio and red snow crab C. japonicus was inferred by culturing wild-born megalopae collected from the Sea of Japan. Metamorphosis occurred from late June to late July (mainly in July) in snow crab, and from early July to early October (mainly from August to September) in red snow crab. The number of days required from the time of collection to metamorphosis was less than the intermoult period previously reported for snow crab megalopae. However, the developmental period of the megalopae was estimated as substantially longer in red snow crab than in snow crab. Previous studies have shown that the hatching season and the period of the zoeal stage in both two species are similar. These results suggest that a different metamorphosis season between the two species would be due to a difference in their megalopal intermoult period.  相似文献   

7.
The first zoeal stage of the endemic southern Atlantic pinnotherid crab Austinixa aidae is described and illustrated based on laboratory-hatched material from ovigerous females collected from the upper burrows of the thalassinidean shrimp Callichirus major at Ubatuba, São Paulo, Brazil. The zoeae of Austinixa species can be distinguished from other pinnotherids and especially from zoeae of the closely related species of Pinnixa by the telson structure.  相似文献   

8.
The zoeal and megalopal stage ofMacrophthalmus erato were obtained under laboratory conditions and are described and figured. Five zoeal and one megalopal stages were reared at 25; salinity and temperature of 29°C. Their features are compared with those of known species of the genus.  相似文献   

9.
Larvae of Mithrax caribbaeus were reared in the laboratoryin a factorial experiment employing three temperatures (22,25 and 28°C) and three salinities (32, 35 and 38). Survivaland duration of larval stages were recorded. Ovigerous femalesof M.caribbaeus were collected from the south-eastern coastof Margarita Island, Venezuela, and maintained in individualaquaria until hatching. Eggs from three of the females hatchedin the laboratory. Larvae from each hatching were subdividedinto groups of 10 and reared in plastic bowls containing 200ml filtered and UV-irradiated sea water at different temperature–salinitycombinations. Larvae were transferred daily to clean bowls withnewly hatched Artemia nauplii, and the number of molts and mortalitywithin each bowl was recorded. Complete larval development ofM.caribbaeus occurred under all experimental conditions. Salinityhad the greatest effect on percentage survival of each larvalstage and complete development up to the first crab stage. Thefirst zoeal stage exhibited the highest survival rate. Maximumsurvival for this stage occurred at 25°C, 32–35. Survivalin the second zoeal stage and the megalopa was affected onlyby salinity. Effects of temperature and salinity on survivaldecreased with advance in development. The duration of the twozoeal stages, the megalopa, and development to the first crabstage showed a gradual reduction with increasing temperature.Salinity showed an effect on the duration of zoeal stages butnot on the megalopal stage. Development from hatching to thefirst crab stage required 8–18 days, depending on thetemperature–salinity combination, and was inversely relatedto temperature, averaging 14.3 days at 22°C, 11.8 days at25°C and 9.2 days at 28°C.  相似文献   

10.
The complete larval development of the grapsid crab Brachynorusgemmellari (Rizza, 1839) was obtained by culture in the Iabomtoiy.Five zoeal stages, the megalopa and the first crab stage aredescribed and illustrated. Larval development from hatchingto first crab took 26 days at 20C. The morphological charaeiarsof the larvae of B.gemmellari are compared with those of otherknown larvae of the genus Brachynosus.  相似文献   

11.
Mud crabs, Scylla spp. , are commercially important in many Indo-Pacific countries. The larval development of mud crabs has been reported previously as five zoeal and one megalopal stages. This paper reports larval rearing experiments that revealed variability in larval developmental stages in the mud crab Scylla paramamosain, one of four mud crab species. In addition to normal five zoeal stages, an alternative pathway of developing through six zoeal stages was observed for the crab. There were evidences suggested that the appearance of the additional Zoea-VI larvae was associated with unfavourable dietary conditions, including poor quality of diet, inadequate quantity of dietary supply and a period of starvation for newly hatched larvae. Based on exuviae and larval specimens, the morphology of the additional Zoea-VI larvae was described.  相似文献   

12.
Larvae of the crab Chasmagnathus granulata were collected in a salt marsh located in the Lagoa dos Patos, Brazil and reared from eclosion to metamorphosis under different dietary regimes. Larvae reared individually in beakers of 40 ml and fed Tetraselmis chuii (zoea III and zoea IV), showed a supplementary stage, here designated as zoea V, with morphological characteristics intermediary between zoea IV and megalopa. No zoeae V molted to megalopa stage. To confirm the occurrence of the supplementary stage, mass cultures of larvae of C. granulata were fed Artemia sp. at high densities, we again detected the fifth zoeal instar. However, when zoeae V were individually placed in beakers and fed Artemia nauplii, they succeeded in molting into megalopae. We observed the occurrence of two types of zoeae IV — a smaller type (from which originated the zoeae V) and a larger type (which directly developed into megalopae). We conclude that stressful nutritional/environmental conditions were responsible for the occurrence of this alternative path of development.  相似文献   

13.
This study describes the first zoeal stage of Cronius ruberand Cronius tumidulus. The zoeae can be distinguished usingthe setation of the cephalic appendages and the lateral processon the abdominal somite.  相似文献   

14.
Summary

The larval, megalopal and early juvenile stages of Pagurus granosimanus are described, illustrated and compared with other North Pacific species of the genus. Morphologically, the zoeae of P. granosimanus appear most similar to the Japanese P. brachiomastus in the majority of characters, but share the endopodal setation of the third maxilliped with a second Japanese species, P. pectinatus. The megalopae of P. granosimanus are unlike those of other North Pacific species in having 5+5 marginal setae on the telson, rather than the customary 4+4, or less frequent 3+3. Comparison of juvenile characters is limited to pleopodal changes among the regional species for which data are available. P. granosimanus is unusual in undergoing complete pleopodal loss at the second crab stage with return of left pleopods in the fourth stage.  相似文献   

15.
Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5–15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15–30). In the latter, survival ranged from 80–95% and development took 10–11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval ‘export’ strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.  相似文献   

16.
Larvae of the mud crab Panopeus lacustris were reared in laboratory from ovigerous females collected in the estuarine area of the Caeté River in the Amazonian region. The complete development of this species consisted of four zoeal and one megalopal stages, which were described and illustrated in detail. The results are compared with those of other previous studies on larval development of the species belonging to the genus Panopeus and then briefly discussed.  相似文献   

17.
The southern king crab, Lithodes santolla Molina, is distributed in cold-temperate and subantarctic waters ranging from the southeastern Pacific island of Chiloé (Chile) and the deep Atlantic waters off Uruguay, south to the Beagle Channel (Tierra del Fuego, Argentina/Chile). Recent investigations have shown that its complete larval development from hatching to metamorphosis, comprising three zoeal stages and a megalopa, is fully lecithotrophic, i.e. independent of food. In the present study, larvae were individually reared in the laboratory at seven constant temperatures ranging from 1 to 18 °C, and rates of survival and development through successive larval and early juvenile stages were monitored throughout a period of 1 year. The highest temperature (18 °C) caused complete mortality within 1 week; only a single individual moulted under this condition, 2 days after hatching, to the second zoeal stage, while all other larvae died later in the zoea I stage. At the coldest condition (1 °C), 71% of the larvae reached the zoea III stage, but none of these moulted successfully to a megalopa. A temperature of 3 °C allowed for some survival to the megalopa stage (17-33% in larvae obtained from two different females), but only a single individual passed successfully, 129 days after hatching, through metamorphosis to the first juvenile crab instar. At all other experimental conditions (6, 9, 12 and 15 °C), survival through metamorphosis varied among temperatures and two hatches from 29% to 90% without showing a consistent trend. The time of nonfeeding development from hatching to metamorphosis lasted, on average, from 19 days at 15 °C to 65 days at 6 °C. The relationship between the time of development through individual larval or juvenile stages (D) and temperature (T) was described as a power function (D=aTb, or log[D]=log[a]blog[T]). The same model was also used to describe the temperature dependence of cumulative periods of development from hatching to later larval or juvenile stages. One year after hatching, the 7th (6 °C) to 9th (15 °C) crab instar was reached. Under natural temperature conditions in the region of origin of our material (Beagle Channel, Argentina), L. santolla should reach metamorphosis in October-December, i.e. ca. 2 months after hatching (taking place in winter and early spring). Within 1 year from hatching, the crabs should grow approximately to juvenile instars VII-VIII. Our results indicate that the early life-history stages of L. santolla tolerate moderate cold stress as well as planktonic food-limitation in winter, implying that this species is well adapted to subantarctic environments with low temperatures and a short seasonal plankton production.  相似文献   

18.
The complete larval development of the Eastern Atlantic grapsidcrab, Brachynotus atlanticus, was obtained in the laboratory.Five zoeal stages, the megalopa and the first crab stage aredescribed and illustrated. Under laboratory conditions at 23°Cthe first crab appeared on the 25th day. This is the first speciesof the genus for which the complete larval development is known.Larval features are compared with those of other members ofthe subfamily Varuninae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号