首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of reversible inactivation of chloroplast CF1-ATPase by Mg2+ and ADP was studied. The rate of inactivation obeys the first-order equation and is independent of ADP concentration. An analysis of the dependence of the inactivation rate on Mg2+ concentration demonstrated that the limiting step of inactivation is other than Mg2+ binding, i.e. the subsequent steps which include, in all probability, the conformational changes of the enzyme. The original Mg2+-dependent activity of CF1-ATPase is close to that observed under steady-state conditions in the presence of sulphate and methanol and exceeds the Ca2+-dependent activity approximately 6-fold. Preincubation of CF1-ATPase with Mg2+ results in inhibition of the original activity of the enzyme. This effect is not removed by addition of the ATP-regenerating system (pyruvate kinase + phosphoenol pyruvate) to the preincubation medium but is diminished by sulphite and the non-hydrolyzed analog of ATP--beta, gamma-methyladenosine-5-triphosphate. After addition of AMPPCP to the reaction mixture the initial reaction rate is decreased, while the steady-state rate is increased. It may be concluded that the Mg2+-dependent inactivation of CF1-ATPase is induced by the tightly bound ADP. The latter can be replaced by ATP, which in contrast to ADP does not form an inactive complex with the enzyme. A comparison of experimental results with literature data suggests that the mechanism of "alternating sites" proposed by Boyer et al. for ATP hydrolysis by soluble CF1-ATPase is not realized under the given experimental conditions.  相似文献   

2.
Illumination of chloroplast thylakoids activates ATP synthase-ATPase complex CF0 . CF1. The time course of ATP synthesis is linear if ADP and Pi are added before or simultaneously with illumination. ATP synthesis initiated by adding the substrates in the light exhibits a curvilinear time course with a low initial rate (Vi). Vi, but not the rate at a steady state, decreases with increasing preillumination time with a half-time of 2 s. Coincident with this decrease in Vi, activation of ATP hydrolysis takes place. In the postillumination dark, restoration of Vi is observed: Vi increases with increasing time intervals between the end of illumination and the addition of the substrates with simultaneous reillumination (half-time of 3 s). Coincident with this restoration of Vi, inactivation of ATP hydrolysis takes place. Such an increase in Vi in the postillumination dark is not observed in thylakoids pretreated with N-ethylmaleimide. These results suggest the following: in the light, the ATP synthetically active, but ATP hydrolytically inactive state (Es) converts to the ATP hydrolytically active, but ATP synthetically inactive (or less active) state (Eh) in the absence of ADP and Pi. The N-ethylmaleimide pretreatment inhibits this process. In the postillumination dark, the reverse conversion takes place.  相似文献   

3.
Incubation of spinach chloroplast thylakoids with pyridoxal 5'-phosphate modified the epsilon subunit of ATP synthase (CF0CF1). Illumination of thylakoids stimulated the modification of one specific amino acid residue of the epsilon subunit by a factor of 3. Endoproteinase Glu-C treatment of the isolated epsilon subunit and fractionation of the peptides by high performance liquid chromatography revealed a major fluorescent peptide with the sequence GKRQKIE. Further treatment of this peptide with endoproteinase Arg-C gave a strongly fluorescent tripeptide (GXR). From the primary structure of the epsilon subunit, the specifically modified residue was deduced to be Lys-109. This suggests the energy-dependent conformational changes in the epsilon subunit which change the surroundings of Lys-109 and alter the reactivity of this residue.  相似文献   

4.
Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.  相似文献   

5.
Chromatographic procedures were developed to purify chloroplast ATP synthase (CF0-CF1) in large amounts and to resolve subunits from this enzyme. The ATP synthase thus obtained has high ATP-Pi exchange and Mg2(+)-ATPase activities upon incorporation into asolectin liposomes. The purity of this preparation was about 95%. By modifications of this chromatographic procedure, we purified subunit IV-deficient CF0-CF1, subunit IV-deficient CF0, and subunit IV. Both ATP-Pi exchange and Mg2(+)-ATPase activities were impaired by depletion of subunit IV from CF0-CF1. Partial restoration of these activities was obtained by reconstituting subunit IV-deficient CF0-CF1 with subunit IV. The impairment of these activities was likely caused by a loss in proton conductivity of CF0 upon removal of subunit IV. The dicyclohexylcarbodiimide-sensitive Mg2(+)-ATPase of subunit IV-deficient CF0-CF1 was not as sensitive to the depletion of subunit IV as ATP-Pi exchange. Nearly 90% of subunit IV could be removed, but Mg2(+)-ATPase activity was inhibited by only 40-60%. Thus subunit IV of CF0-CF1 may not participate directly in proton transfer but may have a role in organizing and/or stabilizing CF0 structure.  相似文献   

6.
The interactions of CF0-CF1 with different lipids were studied by following the stimulation of Mg-ATPase and of Pi-ATP exchange activities of reconstituted CF0-CF1 proteoliposomes. The following results were obtained: (1) Both Pi-ATP exchange and Mg-ATPase activities are stimulated by lipids. Furthermore, the inhibition of Mg-ATPase by N,N′-dicyclohexylcarbodiimide is dependent on the interactions of CF0-CF1 with lipids. (2) A polar lipid extract of thylakoid membranes stimulates Mg-ATPase activity of CF0-CF1 more efficiently than phospholipids. The relative effectiveness of Mg-ATPase stimulation is: chloroplast lipids > soybean phospholipids > phosphatidylcholine/phosphatidylserine (4: 1) > phosphatidylcholine. The rate of Pi-ATP exchange in chloroplast lipids CF0-CF1 proteoliposomes is, however, lower than in soybean lipids CF0-CF1 proteoliposomes, due to their higher permeability to protons. Addition of 10% phosphatidylserine to chloroplast lipids reduces their permeability to protons and stimulates Pi-ATP exchange. (3) The kinetic mechanism of ATPase stimulation by chloroplast lipids is by decreasing the Km (ATP) and by increasing Vmax in comparison to soybean lipid proteoliposomes. This may explain the low affinity for ATP and the slow turnover rate of the purified enzyme in artificial lipids in comparison to the native enzyme in chloroplast thylakoids. (4) Chloroplast lipids lacking monogalactosyldiacylglycerols only poorly activate CF0-CF1. A large stimulation of Pi-ATP exchange is obtained by a mixture of 60% monogalactosyldiacylglycerol and 40% of the rest of the chloroplast lipids, but not by mixtures of monogalactosyldiacylglycerol with phospholipids. Hydrogenation of the unsaturated fatty acids of monogalactosyldiacylglycerol inhibits the activation of CF0-CF1. (5) The results suggest that: (a) interactions of specific chloroplast lipids with CF0-CF1 activates the enzyme by increasing its turnover and its affinity for ATP; (b) specific requirements for CF0-CF1 activation are the presence of monogalactosyldiacylglycerols together with another chloroplast lipid component and of highly unsaturated fatty acids.  相似文献   

7.
The proton-linked ATP synthase (CF1-CF0) of chloroplasts consists of a catalytic component (CF1) and a membrane-embedded part (CF0) that interacts with CF1 and contains a proton channel. The subunits of CF0 which are involved in binding of CF1 were studied by examining the effect of selective depletion of subunits I, II, and IV of CF0 from the chloroplast ATP synthase on the association of the remaining CF0 subunits with CF1. Dissociated CF0 subunits were identified by sucrose density gradient centrifugation. Removal of subunit IV alone from CF0-CF1 did not cause dissociation of the other CF0 subunits from CF1. Upon removal of both subunits I and IV from CF0-CF1, subunit II also dissociated, but subunit III was still bound to CF1. Thus, at least two subunits of CF0, I and III, directly associate with CF1. Subunit II is unlikely to bind CF1 directly and may associate with subunit I. Although depletion of subunit IV does not cause dissociation of CF0 from CF1, its interaction with CF1 subunits is uncertain.  相似文献   

8.
9.
The rate of photosynthetic electron transport measured in the absence of ADP and Pi is stimulated by low levels of Hg2+ or Ag+ (50% stimulation approximately or equal to 3 Hg2+ or 6 Ag+/100 chlorophyll) to a plateau equal to the transport rate under normal phosphorylating conditions (i.e. +ADP, +Pi). Chloroplasts pretreated in the light under energizing conditions with N-ethylmaleimide show a similar stimulation of non-phosphorylating electron transport. The stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and N-ethylmaleimide are reversed by the CF1 inhibitor phlorizin, the CF0 inhibitor triphenyltin chloride, and can be further stimulated by uncouplers such as methylamine. The Hg2+ and N-ethylmalemide stimulations, but not the Ag+ stimulation, are completely reversed by low levels of ADP (2 microM), ATP (2 microM), AND Pi (400 microM). Ag+, which is a potent inhibitor of ATP synthesis, has little or no effect upon phosphorylating electron transport (+ADP, +Pi). Concomitant with the stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and ADP + Pi, there is a decrease in the level of membrane energization (as measured by atebrin fluorescence quenching) which is reversed when the CF0 channel is blocked by triphenyltin. These results suggest that modification of critical CF1 sulfhydryl residues by Hg2+, Ag+ or N-ethylmalemide leads to the loss of intra-enzyme coupling between the transmembrane proton-transferring and the ATP synthesis activities of the CF0-CF1 ATP synthase complex.  相似文献   

10.
11.
R Wagner  E C Apley    W Hanke 《The EMBO journal》1989,8(10):2827-2834
The purified chloroplast ATP synthase (CF(0)-CF(1)) was reconstituted into azolectin liposomes from which bilayer membranes on the tip of a glass pipette ('dip stick technique')and planar bilayer membranes were form ed. The CF(0)-CF(1) facilitated ion conductance through the bilayer membranes. Our results clearly indicated that the observed single channel currents were carried by H+ through the isolated and reconstituted chloroplast ATPase. We demonstrated that in proteoliposomes it is the whole enzyme complex CF(0)-CF(1) and not the membrane sector CF(0) alone that constitutes a voltagegated, proton-selective channel with a high conductance of 1-5 pS at pH 5.5-8.0. After removal of CF(1) from the liposomes by NaBr treatment the membrane sector CF(0) displayed various kinds of channels also permeable to monovalent cations. The open probability P(0) of the CF(0)-CF(1) channel increased considerable with increasing membrane voltage [from P(0) less than or equal to 1% (V(m) less than or equal to 120 mV) to P(0) less than or equal to 30% (120 mV less than or equal to Vm 200 mV)]. In the presence of ADP (3 microM) and P(i) (5 microM), which specifically bind to CF(1), the open probability decreased and venturicidin (1 microM), a specific inhibitor of H+ flow through CF(0) in thylakoid membranes, blocked the channel almost completely. Our results, which reveal a high channel unit conductance, and at membrane voltages less than 100 mV low open probability with concomitant mean open times in the micros timescale (less than 100 micros) for the energy coupling in the enzyme complex. At physiological membrane voltages for photophosphorylation (about 30 mV) the enzyme complex would then display a time-averaged conductance of about 1 fS.  相似文献   

12.
The beta subunit isolated from the chloroplast ATP synthase F1 (CF1) has a single dissociable nucleotide binding site, consistent with the proposed function of this subunit in nucleotide binding and catalysis. The beta subunit bound the nucleotide analogs trinitrophenyl-ATP (TNP-ATP) or trinitrophenyl-ADP (TNP-ADP) with nearly equal affinities (Kd = 1-2 microM) but did not bind trinitrophenyl-AMP. Both ATP and ADP effectively competed with TNP-ATP for binding. Other nucleoside triphosphates were also able to compete with TNP-ATP for binding to beta; their order of effectiveness (ATP greater than GTP, ITP greater than CTP) mimicked the normal substrate specificity of CF1. The single nucleotide binding site on the isolated beta subunit very closely resembles the low affinity catalytic site (site 3) of CF1 (Bruist, M.F., and Hammes, G. G. (1981) Biochemistry 20, 6298-6305), suggesting that tight nucleotide binding by other sites on the enzyme involves other CF1 subunits in addition to the beta subunit. The results are inconsistent with an earlier report (Frasch, W.D., Green, J., Caguial, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069), which suggested more than one nucleotide binding site per beta subunit. Binding of nucleotides to the isolated beta subunit was eliminated by a brief heat treatment (40 degrees C for 10 min) of the protein. A small change in the circular dichroism spectrum of beta accompanied the heat treatment indicating that a localized (rather than global) change in the folding of beta, involving at least part of the nucleotide binding domain, had occurred. Also accompanying the loss of nucleotide binding was a loss of the reconstitutive capacity of the beta subunit. ATP protected against the effects of the heat treatment.  相似文献   

13.
The H(+)/ATP ratio and the standard Gibbs free energy of ATP synthesis were determined with a new method using a chemiosmotic model system. The purified H(+)-translocating ATP synthase from chloroplasts was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. During reconstitution, the internal phase was equilibrated with the reconstitution medium, and thereby the pH of the internal liposomal phase, pH(in), could be measured with a conventional glass electrode. The rates of ATP synthesis and hydrolysis were measured with the luciferin/luciferase assay after an acid-base transition at different [ATP]/([ADP][P(i)]) ratios as a function of deltapH, analysing the range from the ATP synthesis to the ATP hydrolysis direction and the deltapH at equilibrium, deltapH (eq) (zero net rate), was determined. The analysis of the [ATP]/([ADP][P(i)]) ratio as a function of deltapH (eq) and of the transmembrane electrochemical potential difference, delta micro approximately (H)(+) (eq), resulted in H(+)/ATP ratios of 3.9 +/- 0.2 at pH 8.45 and 4.0 +/- 0.3 at pH 8.05. The standard Gibbs free energies of ATP synthesis were determined to be 37 +/- 2 kJ/mol at pH 8.45 and 36 +/- 3 kJ/mol at pH 8.05.  相似文献   

14.
The single sulfhydryl residue (cysteine-63) of the beta subunit of the chloroplast ATP synthase F1 (CF1) was accessible to labeling reagents only after removal of the beta subunit from the enzyme complex. This suggests that cysteine-63 may be located at an interface between the beta and the alpha subunits of CF1, although alternative explanations such as a conformational change in beta brought about by its release from CF1 cannot be ruled out. Cysteine-63 was specifically labeled with [(diethylamino)methylcoumarinyl]-maleimide, and the distance between this site and trinitrophenyl-ADP at the nucleotide binding site on beta was mapped using fluorescence resonance energy transfer. Cysteine-63 is located in a hydrophobic pocket, 42 A away from the nucleotide binding site on beta.  相似文献   

15.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

16.
The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.  相似文献   

17.
The steady state kinetics of ATP synthesis and hydrolysis catalyzed by the chloroplast dicyclohexylcarbodiimide-sensitive ATPase reconstituted into phospholipid vesicles were studied as a function of the transmembrane proton gradient. Bacteriorhodopsin also was incorporated into the vesicles so that a constant pH gradient could be maintained by continuous illumination of the liposomes. The dependence of the initial rates of ATP synthesis and hydrolysis on substrate concentrations is consistent with Michaelis-Menten kinetics, with enzyme, ADP, and Pi forming a ternary complex. The Michaelis constants for both synthesis and hydrolysis are essentially independent of the pH gradient, while the maximum velocities depend strongly on it. The equilibrium constant for hydrolysis was calculated from the steady state kinetic parameters, and the dependence of the equilibrium constant on the pH gradient indicates that 3 protons are transported per ATP synthesized or hydrolyzed. The dependence of the steady state kinetic parameters on the pH gradient can be described by a mechanism in which the binding of substrates occurs before the transport of protons and the transport of the 3 protons is sequential rather than concerted.  相似文献   

18.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

19.
1. The isolation of F0F1-ATPase complex from Rhodospirillum rubrum chromatophores by the use of taurodeoxycholate is described. 2. The enzyme preparation contains about 12 polypeptides; five are subunits of the F1 moiety. 3. The ATPase activity of the purified enzyme is dependent on the addition of phospholipids. 4. Km-vales for Mg2+-ATP and Ca2+-ATP are similar to the values obtained for the membrane-bound enzyme. 5. The F0F1-ATPase complex is more than 70% inhibited by oligomycin and N,N'-dicyclohexylcarbodiimide. 6. The F0F1-ATPase complex was integrated into liposomes. The reconstituted proteoliposomes catalyzed energy transduction as shown by ATP-dependent quenching of acridine dye fluorescence and ATP-32Pi exchange.  相似文献   

20.
The maltose transport system in Escherichia coli is a member of the ATP-binding cassette superfamily of transporters that is defined by the presence of two nucleotide-binding domains or subunits and two transmembrane regions. The bacterial import systems are unique in that they require a periplasmic substrate-binding protein to stimulate the ATPase activity of the transport complex and initiate the transport process. Upon stimulation by maltose-binding protein, the intact MalFGK(2) transport complex hydrolyzes ATP with positive cooperativity, suggesting that the two nucleotide-binding MalK subunits interact to couple ATP hydrolysis to transport. The ATPase activity of the intact transport complex is inhibited by vanadate. In this study, we investigated the mechanism of inhibition by vanadate and found that incubation of the transport complex with MgATP and vanadate results in the formation of a stably inhibited species containing tightly bound ADP that persists after free vanadate and nucleotide are removed from the solution. The inhibited species does not form in the absence of MgCl(2) or of maltose-binding protein, and ADP or another nonhydrolyzable analogue does not substitute for ATP. Taken together, these data conclusively show that ATP hydrolysis must precede the formation of the vanadate-inhibited species in this system and implicate a role for a high-energy, ADP-bound intermediate in the transport cycle. Transport complexes containing a mutation in a single MalK subunit are still inhibited by vanadate during steady-state hydrolysis; however, a stably inhibited species does not form. ATP hydrolysis is therefore necessary, but not sufficient, for vanadate-induced nucleotide trapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号