首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavonol aglycones are required for pollen germination in petunia (Petunia hybrida L.). Mutant plants lacking chalcone synthase (CHS), which catalyzes the first committed step in flavonoid synthesis, do not accumulate flavonols and are self-sterile. The mutant pollen can be induced to germinate by supplementing it with kaempferol, a flavonol aglycone, either at the time of pollination or by addition to an in vitro germination system. Biochemical complementation occurs naturally when the mutant, flavonol-deficient pollen is crossed to wild-type, flavonoid-producing stigmas. We found that successful pollination depends on stigma maturity, indicating that flavonol aglycone accumulation may be developmentally regulated. Quantitative immunoblotting, in vitro and in vivo pollen germination, and high-performance liquid chromatographic analyses of stigma and anther extracts were used to determine the relationship between CHS levels and flavonol aglycone accumulation in developing petunia flowers. Although substantial levels of CHS were measured, we detected no flavonol aglycones in wild-type stigma or anther extracts. Instead, the occurrence of a conjugated form (flavonol glycoside) suggests that a mechanism may operate to convert glycosides to the active aglycone form.  相似文献   

2.
Conditional male fertility in maize   总被引:3,自引:0,他引:3  
  相似文献   

3.
Flavonols are plant-specific molecules that are required for pollen germination in maize and petunia. They exist in planta as both the aglycone and glycosyl conjugates. We identified a flavonol 3-O-galactosyltransferase (F3GalTase) that is expressed exclusively in the male gametophyte and controls the formation of a pollen-specific class of glycosylated flavonols. Thus an essential step to understanding flavonol-induced germination is the characterization of F3GalTase. Amino acid sequences of three peptide fragments of F3GalTase purified from petunia pollen were used to isolate a full-length cDNA clone. RNA gel blot analysis and enzyme assays confirmed that F3GalTase expression is restricted to pollen. Heterologous expression of the F3GalTase cDNA in Escherichia coli yielded active recombinant enzyme (rF3GalTase) which had the identical substrate specificity as the native enzyme. Unlike the relatively nonspecific substrate usage of flavonoid glycosyltransferases from sporophytic tissues, F3GalTase uses only UDP-galactose and flavonols to catalyze the formation of flavonol 3-O-galactosides. Kinetic analysis showed that the k(cat)/K(m) values of rF3GalTase, using kaempferol and quercetin as substrates, approaches that of a catalytically perfect enzyme. rF3GalTase catalyzes the reverse reaction, generation of flavonols from UDP and flavonol 3-O-galactosides, almost as efficiently as the forward reaction. The biochemical characteristics of F3GalTase are discussed in the context of a role in flavonol-induced pollen germination.  相似文献   

4.
A new tetraglycosyl flavonol, 3-O-[2-O-xylosyl-6-O-(3-O-glucosyl-rhamnosyl) glucosyl] kaempferol was isolated from pale purplish-pink petals of Wabisuke camellia cv. Tarokaja with three known flavonols. It was named urakunoside after the species name of Tarokaja, Camellia uraku. Urakunoside was a major flavonol component in the Tarokaja petals, but was not detected in petals of Tarokaja’s presumed ancestor species.  相似文献   

5.
Flavonols form an important class of flavonoids which serve an essential function during plant reproduction. Flavonoid biosynthesis is initiated by the enzyme chalcone synthase (CHS). A high abundance of flavonols and chs mRNA was demonstrated in male and female reproductive organs of Petunia hybrida. Detailed analyses revealed precise spatial and temporal regulation of the chs promoter and flavonol synthesis in the stigma, style and ovules. Transgenic plants were generated with a complete block of flavonol biosynthesis as the result of anti-sense inhibition of chs gene activity. The absence of flavonols by this dominant mutation rendered these plants self-sterile. Pollination experiments with wild-type and mutant plants revealed that the production of flavonols in either the anthers or the pistils was required for pollen tube growth and seed set. Mutant pollen without flavonols in their exine germinated normally. However, after a short period of in vitro pollen tube growth the tips of these tubes disrupted and the protoplasm was disloaded leading to the death of the pollen grain. Addition of flavonol aglycones but not other flavonoids complemented this phenotype. Confocal laser scanning microscopy revealed the localization of high levels of flavonols throughout the wild-type pollen tube. These compounds were not detected in the exine or cell wall of growing tubes. In addition, it was observed that the flavone apigenin could completely inhibit pollen tube growth. Taken together, it is shown that flavonols play an important role in the growth of the pollen tube and their mode of action is discussed.  相似文献   

6.
Flavonols are essential for pollen germination and tube growth in petunia and can be supplied by either the pollen or stigma at pollination. HPLC analysis and a sensitive bioassay demonstrated that both pollination and wounding induce flavonol accumulation, especially kaempferol, in the outer cell layers and exudate of the stigma. Pollination and wounding induced nearly identical flavonol kinetics and patterns of accumulation in the same target tissue, suggesting that they share elements of a common signal transduction pathway. The wound response was systemic, because kaempferol accumulated in the stigma when distal tissues, such as the corolla, stamens, or sepals, were wounded. We have exploited the germination requirement for flavonols and the high level of kaempferol that accumulates after wounding to enhance plant fecundity. Seed set was significantly increased by mechanically wounding the corolla and stamens prior to the application of pollen to the stigma. A reproductive role for a plant secondary metabolite and the specific function of stigmatic kaempferol are discussed from an evolutionary perspective.  相似文献   

7.
A new acetylated flavonol glycoside: patuletin 3-O-[5′″-O-feruloyl-β-D-apiofuransyl (1′″→2′′)-β-D-glucopyranoside] (2), together with a known patuletin 3-O-β-D-glucopyranoside (1) were isolated from the aerial part of Artiplex littoralis L. (Chenopodiacease). Their structures were elcidated by acid hydrolysis and spectroscopic methods including UV, 1H, 13C NMR and ESI-MS for both compounds, additionally 2D-NMR, HSQC, HMBC experiments were performed for 2.  相似文献   

8.
Cell cultures of Linum album Kotschy ex Boiss. (Linaceae) showing high accumulation of the lignan podophyllotoxin (PTOX) were established. Enzymological studies revealed highest activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamate:CoA ligase and cinnamoyl-CoA:NADP oxidoreductase immediately prior to PTOX accumulation. To investigate PTOX biosynthesis, feeding experiments were performed with [2-13C]3′,4′-dimethoxycinnamic acid, [2-13C]3′,4′-methylenedioxycinnamic acid (MDCA), [2-13C]3′,4′,5′-trimethoxycinnamic acid, [2-13C]sinapic acid, [2-13C]- and [2,3-13C2]ferulic acid. Analysis of the metabolites by HPLC coupled to tandem mass spectrometry revealed incorporation of label from ferulic acid into PTOX and deoxypodophyllotoxin (DOP). In addition, MDCA was also unambiguously incorporated intact into PTOX. These observations suggest that in L. album both ferulic acid and methylenedioxy-substituted cinnamic acid can be incorporated into lignans. Furthermore, it appears that, in this species, the hydroxylation of DOP is a rate-limiting point in the pathway leading to PTOX. Electronic supplementary material to this article is available at and is accessible for authorized users. Electronic Publication  相似文献   

9.
An enzyme,S-adenosyl-l-methionine: flavonoid 7-O-methyltransferase (F7OMT), catalyzing the transfer of the methyl group fromS-adenosyl-l-methionine (SAM) to the 7 position of sophoricoside (5, 7, 4′-trihydroxyisoflavone 4′-O-glucoside) and some of the other flavonoids, was detected in extracts from leaves ofPrunus x yedoensis, and it was partially purified (about 203-fold) by a combination of gel filtration and ion-exchange column chromatographies. F7OMT was isolated as a soluble enzyme with a pH optimun of 7.5 in K-phosphate buffer. The molecular mass of F7OMT, which had an isoelectric point at pH 4.1, was estimated by elution from a column of Sephadex G-100 to be about 36 kDa. The activity of F7OMT was stimulated by 14 mM 2-Co2+ and reagents that react with sulfhydryl groups. The apparentKm values for sophoricoside, its aglycone genistein (5, 7, 4′-trihydroxyisoflavone) and quercetin were 1.49, 2.19 and 1.89 μM, respectively. The apparentKm value for SAM as methyl donor was 2.08 mM. The specificity of F7OMT for methyl acceptors was not strict; flavonols, flavanones and flavanonols in addition to isoflavones served as methyl acceptor. An examination ofP. x yedoensis leaves during spring and autumn showed variations in the activities of F7OMT and UDP-glucose: isoflavone 4′-O-glucosyltransferase (I4′ GT). The activities of F7OMT and I4′GT increased in enlarging leaf tissues and then markedly declined when the leaves approached maturation. In autumn leaves F7OMT activity was scarcely detected, but a small peak of I4′GT activity was observed during autumnal reddening.  相似文献   

10.
UV-absorbing substances were isolated from the translucent bracts of Rheum nobile, which grows in the alpine zone of the eastern Himalayas. Nine kinds of the UV-absorbing substances were found by high performance liquid chromatography (HPLC) and paper chromatography (PC) surveys. All of the five major compounds are flavonoids, and were identified as quercetin 3-O-glucoside, quercetin 3-O-galactoside, quercetin 3-O-rutinoside, quercetin 3-O-arabinoside and quercetin 3-O-[6-(3-hydroxy-3-methylglutaroyl)-glucoside] by UV, 1H and 13C NMR, mass spectra, and acid hydrolysis of the original glycosides, and direct PC and HPLC comparisons with authentic specimens. The four minor compounds were characterised as quercetin itself, quercetin 7-O-glycoside, kaempferol glycoside and feruloyl ester. Of those compounds, quercetin 3-O-[6-(3-hydroxy-3-methylglutaroyl)-glucoside] was found in nature for the first time. The translucent bracts of R. nobile accumulate a substantial quantity of flavonoids (3.3–5 mg per g dry material for the major compounds). Moreover, it was clarified by quantitative HPLC survey that much more of the UV-absorbing substances is present in the bracts than in rosulate leaves. Although the flavonoid compounds have been presumed to be the important UV shields in higher plants, there has been little characterisation of these compounds. In this paper, the UV-absorbing substances of the Himalayan R. nobile were characterised as flavonol glycosides based on quercetin.  相似文献   

11.
The flavonol glycosides of quercetin, isorhamnetin and kaempferol were isolated from Zea mays pollen. The most prominent flavonols were diglycosides of quercetin and isorhamnetin. Flavonol 3-O-glucosides of quercetin, isorhamnetin and kaempferol, and triglucosides of quercetin and isorhamnetin, were minor components. The flavonoid pattern of maize pollen is characterized by the accumulation of quercetin and isorhamnetin diglycosides and by the absence of flavones, which are common in other maize tissues.  相似文献   

12.
Flavonoid compounds play important roles as flower pigments, stress metabolites formed in response to UV, during pollen germination and for polar auxin transport (Trends Plant Sci. 1 (1996) 377). Flavonoid sulfate esters are common in plants, especially the Asteraceae; however, due to the lack of information regarding the factors that regulate their accumulation, their exact role remains to be elucidated. The biosynthesis of flavonol sulfate esters is catalyzed by a number of position specific flavonol sulfotransferases (STs). An Arabidopsis thaliana database search has allowed us to identify and classify 18 putative ST coding sequences. We report here the cloning and characterization of the AtST3a member of this family that is expressed at early stages of seedling development and in the inflorescence stem and siliques of mature plants. The recombinant AtST3a protein exhibits strict specificity for position 7 of flavonoids. In contrast to previously characterized flavonol 7-ST from Flaveria bidentis that sulfonates only flavonol disulfates, AtST3a was found to accept as substrates a number of flavonols and flavone aglycones, as well as their monosulfate esters. The discovery of a flavonol ST from A. thaliana suggests that flavonol sulfates are more widely distributed than originally believed and this model plant could be used to study their biological significance.  相似文献   

13.
The effect of anther-derived substances on pollen function was studied using pollen produced by in vitro culture of immature pollen of tobacco (Nicotiana tabacum L.) and petunia (Petunia hybrida). Addition of conditioned medium consisting of diffusates from in situ matured pollen strongly increased pollen germination frequency and pollen tube growth, as well as seed set after in situ pollination. Thin-layer chromatography and depletion of phenolic substances by Dowex treatment indicated that flavonols are present in the diffusate and may be the active compounds. When added to the germination medium, flavonols (quercetin, kaempferol, myricetin) but not other flavonoids strongly promoted pollen germination frequency and pollen tube growth in vitro. The best results were obtained at very low concentrations of the flavonols (0.15-1.5 μm), indicating a signaling function. The same compounds were also effective when added during pollen development in vitro.  相似文献   

14.
3-O-Methylated flavonols were isolated as crystals for the first time from the flowers ofNeochilenia, Neoporteria andParodia species belonging to the sub-family Cereoideae (Cactaceae), which are native to South America. The structures of three compounds were confirmed by chemical and spectral means. In the tepals of 7 species ofNeoporteria, 3-methyl ether of quercetin was found in the form of aglycone, whereas it was present as the 7-O-glucoside in the tepals ofParodia sanguiniflora and as the 4′-O-glucoside in the tepals of three species ofNeochilenia. Among those two glucosides of quercetin 3-methyl ether, the former has been found in a whole plant ofArtemisia transiliensis (Compositae), while the latter is new to the literature. Therefore, the term “neochilenin” may be assigned to this new pigment. Contribution from the Research Institute of Evolutionary Biology, No. 44.  相似文献   

15.
Synthesis of 3-[4-(N-substituted sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyri-do[3′,2′:4,5]selenolo[3,2-d]pyrimidines,7-[4-(N-substituted sulfamoyl)phenyl]-7,8-dihydro-8-oxo-3,4-diphenylpyrimido[4′,5′:4,5]selenolo [2,3-c]pyridazines and 1-[4-(N-substituted sulfamoyl)phenyl]-1,11-dihydro 11-oxo-4-methylpyrimido[4′,5′:4,5]selenolo[2,3-b]quinolines is reported. 4-Amino-N-pyrimidine-2-ylbenzene sulfonamide (a), 4-amino-N-(2,6-dimethylpyrimidin-4-yl)benzene sulfonamide (b), N-[(4-aminophenyl)sulfonyl] acetamide (c) with N-ethoxymethyleneamino of selenolo pyridine, selenolo pyridazine and selenolo quinoline derivatives respectively were obtained starting from 1-amino-N 4-substituted sulfanilamides. Spectroscopic data (IR, 1H NMR, 13C NMR and Mass spectral) confirmed the structure of the newly synthesized compounds. Substituted pyrimidines, pyridazines and quinolines were screened for antibacterial activity against gram-positive and gram-negative bacteria. Selenolo derivative of N-[(4-aminophenyl)sulfonyl] acetamide (substitutent of sulfacetamide c) showed strong bactericidal effect against all the tested organisms. Selenolo[3,2-d]pyrimidin (substitutent a) showed a good bactericidal effect against Serratia marcescens, Staphylococcus aureus and Escherichia coli. Compounds selenolo[2,3-c]pyridazine (substitutent b), selenolo[2,3-b]quinoline(substitutents c)) exhibited a moderate bactericidal effect against Serratia marcescens. None of the synthesized seleno pyridazines has a considerable antimicrobial activity against the tested organisms. The minimum inhibitory concentration (MIC) of the most active compound-3-[4-(N-acetyl sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyrido[3′,2′:4,5]selenolo [3,2-d]pyrimidine was 10 mg ml−1.  相似文献   

16.
4′-Fluoro-2′,3′-O-isopropylidenecytidine was synthesized by the treatment of 5′-O-acetyl-4′-fluoro-2′,3′-O-isopropylideneuridine with triazole and 4-chlorophenyl dichlorophosphate followed by ammonolysis. The interaction of 4′-fluoro-2′,3′-O-isopropylidenecytidine with hydroxylamine resulted in 4′-fluoro-2′,3′-O-isopropylidene-5′-O-acetyl-N 4-hydroxycytidine. The removal of the 2′,3′-O-isopropylidene groups led to acetyl derivatives of 4′-fluorouridine, 4′-fluorocytidine, and 4′-fluoro-N 4-hydroxycytidine. 4′-Fluorouridine 5′-O-triphosphate was obtained in three steps starting from 4′-fluoro-2′,3′-O-isopropylideneuridine. 4′-Fluorouridine 5′-O-triphosphate was shown to be an effective inhibitor of HCV RNA-dependent RNA polymerase and a substrate for the NTPase reaction catalyzed by the HCV NS3 protein, the hydrolysis rate being similar to that of ATP. It could also activate a helicase reaction with an efficacy of only threefold lower than that for ATP.  相似文献   

17.
18.
Uridine 5′-diphosphoglucose:betanidin 5-O- and 6-O-glucosyltransferases (5-GT and 6-GT; EC 2.4.1) catalyze the regiospecific formation of betanin (betanidin 5-O-β-glucoside) and gomphrenin I (betanidin 6-O-β-glucoside), respectively. Both enzymes were purified to near homogeneity from cell-suspension cultures of Dorotheanthus bellidiformis, the 5-GT by classical chromatographic techniques and the 6-GT by affinity dye-ligand chromatography using UDP-glucose as eluent. Data obtained with highly purified enzymes indicate that 5-GT and 6-GT catalyze the indiscriminate transfer of glucose from UDP-glucose to hydroxyl groups of betanidin, flavonols, anthocyanidins and flavones, but discriminate between individual hydroxyl groups of the respective acceptor compounds. The 5-GT catalyzes the transfer of glucose to the C-4′ hydroxyl group of quercetin as its best substrate, and the 6-GT to the C-3 hydroxyl group of cyanidin as its best substrate. Both enzymes also catalyze the formation of the respective 7-O-glucosides, but to a minor extent. Although the enzymes were not isolated to homogeneity, chromatographic, electrophoretic and kinetic properties proved that the respective enzyme activities were based on the presence of single enzymes, i.e. 5-GT and 6-GT. The N terminus of the 6-GT revealed high sequence identity to a proposed UDP-glucose:flavonol 3-O-glucosyltransferase (UF3GT) of Manihot esculenta. In addition to the 5-GT and 6-GT, we isolated a UF3GT from D. bellidiformis cell cultures that preferentially accepted myricetin and quercetin, but was inactive with betanidin. The same result was obtained with a UF3GT from Antirrhinum majus and a flavonol 4′-O-glucosyltransferase from Allium cepa. Based on these results, the main question to be addressed reads: Are the characteristics of the 5-GT and 6-GT indicative of their phylogenetic relationship with flavonoid glucosyltransferases? Received: 11 February 1997 / Accepted: 18 April 1997  相似文献   

19.
Despite the vital role that flavonols play in fertilization and pollen tube growth of a number of species such as petunia and maize, their function is still unclear. Pollen tubes of the flavonol-deficient transformant T17.02 of Petunia hybrida L. are able to germinate and start growing in vitro, but eventually disrupt at the tip approximately 2 h after germination. In order to establish the possible role of flavonols in this process, wild-type and flavonol-deficient pollen tubes were subjected to cytological and ultrastructural analyses and screened for differences. The results showed that before disruption of the flavonol-deficient pollen tubes, the structure of the primary wall at the tip dramatically changed from layered to granular. Secretory vesicles at the tip still fused with the wall but lost their capacity to melt into the wall and to form layers. Instead they remained as dark, electron-dense granular structures surrounded by an electron-translucent matrix. Apparently the matrix is not able to sustain the wall's coherence and as a consequence the tube disrupts. No other remarkable cytological or ultrastructural differences between the transformant and the wild-type pollen tubes could be found before tip disruption. Even a morphometric analysis of abundance and distribution of endoplasmic reticulum, dictyosomes and mitochondria did not reveal any significant difference. However, for the first time, obvious morphological differences were observed in the wall of the flavonol-deficient pollen tubes. We conclude that flavonols act on precursors of the pollen tube wall of petunia and interfere with a cross-linking system in the wall, possibly via extensins. Received: 23 February 1998 / Accepted: 13 August 1998  相似文献   

20.
Fifteen flavonols, five aglycones and ten glucosides were isolated from the four species of Tetragonotheca, T. repanda, T. helianthoides, T. texana and T. ludoviciana. Included among the isolated flavonols are four previously unreported 7-O-glucosides, 6-hydroxykaempferol 7-O-glucoside, 6-hydroxykaempferol 6-methyl ether 7-O-glucoside, quercetagetin 6,3′-dimethyl ether 7-O-glucoside and quercetagetin 3,6-dimethyl ether 7-O-glucoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号