首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Role of c-Fos/JunD in protecting stress-induced cell death   总被引:1,自引:0,他引:1  
Zhou H  Gao J  Lu ZY  Lu L  Dai W  Xu M 《Cell proliferation》2007,40(3):431-444
  相似文献   

5.
6.
ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFalpha (tumour necrosis factor alpha). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cepsilon (protein phosphatase 2Cepsilon), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cepsilon inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cepsilon mutant enhanced AP-1 activity. Exogenous PP2Cepsilon associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cepsilon and ASK1 was also observed in mouse brain extracts. PP2Cepsilon directly dephosphorylated ASK1 at Thr845 in vitro. In contrast with PP5, PP2Cepsilon transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cepsilon maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cepsilon and PP5 play different roles in H2O2-induced regulation of ASK1 activity.  相似文献   

7.
8.
The mechanism by which 18beta-glycyrrhetinic acid regulates gap junction intercellular communication (GJIC) remains poorly understood. In this study, treatment of cultured rat neonatal cardiomyocytes with 18beta-glycyrrhetinic acid resulted in dose-dependent inhibition of GJIC as assessed by fluorescent dye transfer analysis. 18beta-Glycyrrhetinic acid induced time-dependent serine/threonine dephosphorylation and redistribution of connexin43 (Cx43) in cardiomyocytes and the induced Cx43 dephosphorylation was prevented by the protein phosphatase inhibitor, calyculin A. However, functional analyses showed that the inhibitory effect of 18beta-glycyrrhetinic acid on dye spreading among cardiomyocytes was not blocked by calyculin A, but was blocked by the Src-selective tyrosine kinase inhibitor, PP2. 18beta-Glycyrrhetinic acid also induced an increase in the levels of phosphorylated Src, and this effect was prevented by PP2. Immunoprecipitation using anti-Cx43 and anti-p-Src antibodies showed that 18beta-glycyrrhetinic acid increased the association between p-Src and Cx43 and induced tyrosine phosphorylation of Cx43. We conclude that the inhibitory effect of 18beta-glycyrrhetinic acid on GJIC in cardiomyocytes involves Src-mediated tyrosine phosphorylation of Cx43.  相似文献   

9.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

10.
11.
12.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

13.
Cytostatin, which is isolated from a microbial cultured broth as a low molecular weight inhibitor of cell adhesion to extracellular matrix (ECM), has anti-metastatic activity against B16 melanoma cells in vivo. In this study, we examined a target of cytostatin inhibiting cell adhesion to ECM. Cytostatin inhibited tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin upon B16 cell adhesion to fibronectin. While the amount of FAK was not affected by cytostatin, electrophoretically slow-migrating paxillin appeared. Alkaline phosphatase treatment diminished cytostatin-induced slow-migrating paxillin. Furthermore, cytostatin increased intracellular serine/threonine-phosphorylated proteins and was found to be a selective inhibitor of protein phosphatase 2A (PP2A). Cytostatin inhibited PP2A with an IC(50) of 0.09 microgram/ml in a non-competitive manner against a substrate, p-nitrophenyl phosphate, but it had no apparent effect on other protein phosphatases including PP1, PP2B and alkaline phosphatase even at 100 microgram/ml. On the contrary, dephosphocytostatin, a cytostatin analogue, without inhibitory effect on PP2A did not affect B16 cell adhesion including FAK and paxillin. These results indicate that cytostatin inhibits cell adhesion through modification of focal contact proteins such as paxillin by inhibiting a PP2A type protein serine/threonine phosphatase. This is the first report that describes a drug with anti-metastatic ability that inhibits PP2A selectively.  相似文献   

14.
Cantharidin is well known as a potent serine/threonine protein phosphatase 1 and 2A (PP1 and PP2A) inhibitor, with less potent inhibitory activity for PP2B, which regulates T-cell proliferation. We synthesized and evaluated four optically pure stereoisomers of 1-substituted norcantharidin analogues. The absolute stereochemistry of each stereoisomer was determined based on X-ray crystal structure analysis. Remarkably, optically active cantharidin analogues having (1S)-configuration showed selective inhibition of PP2B, without inhibiting PP1 or PP2A.  相似文献   

15.
The regulation of protein phosphatase 2A (PP2A) and protein threonine phosphorylation by H(2)O(2) was determined in Caco-2 cell monolayer. Incubation with H(2)O(2) (20 microM) resulted in threonine phosphorylation of a cluster of proteins at the molecular mass range of 170-250 kDa. PKC activity and plasma membrane localization of several isoforms of PKC were not affected by H(2)O(2). However, H(2)O(2) reduced 80-85% of okadaic acid-sensitive protein phosphatase activity. Immunocomplex protein phosphatase assay demonstrated that H(2)O(2) reduced the activity of PP2A, but not that of PP2C or PP1. Oxidized glutathione inhibited PP2A activity in plasma membranes prepared from Caco-2 cells and the phosphatase activity of an isolated PP2A. PP2A activity was also inhibited by N-ethylmaleimide, iodoacetamide, and p-chloromercuribenzoate. Inhibition of PP2A by oxidized glutathione was reversed by reduced glutathione. Glutathione also restored the PP2A activity in plasma membranes isolated from H(2)O(2)-treated Caco-2 cell monolayer. These results indicate that PP2A activity can be regulated by glutathionylation, and that H(2)O(2) inhibits PP2A in Caco-2 cells, which may involve glutathionylation of PP2A.  相似文献   

16.
Many types of serine/threonine protein phosphatase have been cloned and characterized in plants, such as Type-1 serine/threonine protein phosphatase (PP1), Type-2A serine/threonine protein phosphatase (PP2A), Type-2C serine/threonine protein phosphatase (PP2C). However no Type-2B serine/threonine protein phosphatase (PP2B, calcineurin), or calcineurin A subunit-like protein (CaNAL), has been identified. We detected protein phosphatase activity in mixtures of CaM-binding proteins from three plants (Nicotiana tabacum, Brassica oleracea and Arabidopsis thaliana). Two-dimensional electrophoresis (2-D) and Western blot analysis with an anti-rat CNA antibody revealed a small protein of 60 kDa that we believe is a CaNAL. The isoelectric point (pI) of this protein in N. tabacum was approximately 5.69. The protein phosphatase activity in the mixture of CaM-binding proteins from N. tabacum was regulated by Ca2+ and Calmodulin (CaM) with either RII peptides or pNPP as substrate. The immunosuppressive drugs, CsA and FK506, also inhibited the protein phosphatase activity significantly.  相似文献   

17.
We have analysed the effect of mitogenic lectins on c-Fos and c-Jun protein levels as well as on activator protein-1 (AP-1) binding and enhancer activity in Jurkat T-cells. Both c-Fos and c-Jun protein levels were increased after Con A and PHA stimulation. Since T-cell stimulation increases both intracellular Ca2+ and cAMP levels and activates protein kinase C (PKC), the possible involvement of these intracellular messengers in c-Fos and c-Jun induction was tested. PMA, which directly activates PKC, mimicked the effect of the lectins on c-Fos and c-Jun, but elevation of either intracellular Ca2+ or cAMP levels had little or no effect. The mitogen-induced increase of c-Fos and c-Jun immunoreactivity was inhibited by H-7, a kinase inhibitor with relatively high specificity for PKC, and less efficiently by H-8, a structurally related kinase inhibitor less active on PKC, but more active on cyclic nucleotide-dependent kinases. Con A stimulation was found to increase both binding of AP-1 to the AP-1 consensus sequence, TRE, and AP-1 enhancer activity, in Jurkat cells. PMA was also found to increase the AP-1 enhancer activity, whereas elevation of Ca2+ or cAMP had only minor effects. We conclude that stimulation with mitogenic lectins is sufficient to increase both c-Fos and c-Jun protein levels, AP-1 binding and AP-1 enhancer activity in Jurkat cells and that they act via mechanisms that could involve the activation of PKC.  相似文献   

18.
19.
Activity of Na+-K+-2Cl- co-transport (NKCC1) in epithelia is thought to be highly regulated through phosphorylation and dephosphorylation of the transporter. Previous functional studies from this laboratory suggested a role for protein phosphatase 2A (PP2A) as a serine/threonine protein phosphatase involved in the regulation of mammalian tracheal epithelial NKCC1. We expand on these studies to characterize serine/threonine protein phosphatase(s) necessary for regulation of NKCC1 function and the interaction of the phosphatase(s) with proteins associated with NKCC1. NKCC1 activity was measured as bumetanide-sensitive 86Rb uptake or basolateral to apical 86Rb flux in primary cultures of human tracheal epithelial cells or in Calu-3 airway epithelial cells grown on Transwell filter inserts. Preincubation with 0.1 nm okadaic acid, a PP2A > phosphatase 1 (PP1) inhibitor, increased NKCC1 activity 3.5-fold in human tracheal epithelial cells and 4.1-fold in Calu-3 cells. Calyculin, a PP1 > PP2A inhibitor, did not alter NKCC1 activity or percent bumetanide-sensitive flux. The effect of OA was dose-dependent with an IC50 of 0.4 nm. The alpha1-adrenergic agonist methoxamine increased NKCC1 activity and transiently increased PP2A activity 3.8-fold but did not alter PP1 activity. OA augmented methoxamine-dependent stimulation of NKCC1 activity. PP1, PP2A, and PP2C but not PP2B were detected in lysates from Calu-3 cells by immunoblot analysis. PP1 was not detected in immunoprecipitates of NKCC1 and vice versa. PP2A co-immunoprecipitated with NKCC1 and protein kinase C-delta (PKC-delta) and was pulled down by a recombinant N terminus of NKCC1 consisting of amino acids 1-286. One novel finding is co-precipitation of STE20-related proline-alanine-rich kinase, a regulatory kinase for NKCC1, with PP2A and PKC-delta. The results suggest a model of actin serving as a scaffold for binding and association of PKC-delta, PP2A, and STE20-related proline-alanine-rich kinase. The role of the complex of serine/threonine protein kinases and a protein phosphatase is probably the maintenance of optimal phosphorylation of NKCC1 coincident with its physiological function in epithelial absorption and secretion.  相似文献   

20.
The search for potential targets for ceramide action led to the identification of ceramide-activated protein phosphatases (CAPP). To date, two serine/threonine protein phosphatases, protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1), have been demonstrated to function as ceramide-activated protein phosphatases. In this study, we show that treatment with either anti-FAS IgM (CH-11) (150 ng/ml) or exogenous d-(e)-C(6-)ceramide (20 microm) induces the dephosphorylation of the PP1 substrates, serine/arginine-rich (SR) proteins, in Jurkat acute leukemia T-cells. The serine/threonine protein phosphatase inhibitor, calyculin A, but not the PP2A-specific inhibitor, okadaic acid, inhibited both FAS- and ceramide-induced dephosphorylation of SR proteins. Anti-FAS IgM treatment of Jurkat cells led to a significant increase in levels of endogenous ceramide beginning at 2 h with a maximal increase of 10-fold after 7 h. A 2-h pretreatment of Jurkat cells with fumonisin B(1) (100 microm), a specific inhibitor of CoA-dependent ceramide synthase, blocked 80% of the ceramide generated and completely inhibited the dephosphorylation of SR proteins in response to anti-FAS IgM. Moreover, pretreatment of Jurkat cells with myriocin, a specific inhibitor of serine-palmitoyl transferase (the first step in de novo synthesis of ceramide), also blocked FAS-induced SR protein dephosphorylation, thus demonstrating a role for de novo ceramide. These results were further supported using A549 lung adenocarcinoma cells treated with d-(e)-C(6-)ceramide. Dephosphorylation of SR proteins was inhibited by fumonisin B(1) and by overexpression of glucosylceramide synthase; again implicating endogenous ceramide generated de novo in regulating the dephosphorylation of SR proteins in response to FAS activation. These results establish a specific intracellular pathway involving both de novo ceramide generation and activation of PP1 to mediate the effects of FAS activation on SR proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号