首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The N-end rule pathway regulates protein degradation, which depends on exposed N-terminal sequences in prokaryotes and eukaryotes. In plants, conserved and specific enzymes stimulate selective proteolysis. Although a number of developmental and growth phenotypes have been reported for mutants in the N-end rule, its function has remained unrelated to specific physiological pathways. The first report of the direct involvement of the N-end rule in stress responses focused on hypoxic signaling and how the oxygen-dependent oxidation of cystein promotes the N-end rule-mediated degradation of ethylene responsive factor (ERF)-VII proteins, the master regulators of anaerobic responses. It has beensuggested that plants have evolved specific mechanisms to tune ERF-VII availability in the nucleus. In this review, we speculate that ERF-VII proteins are reversibly protected from degradation via membrane sequestration. The oxidative response in plants subjected to anoxic conditions suggests that reactive oxygen and nitrogen species (reactive oxygen species and reactive nitrogen species) may interact or interfere with the N-end rule pathway-mediated response to hypoxia.  相似文献   

3.
4.
The gene PRT1 of Arabidopsis, encoding a 45-kD protein with two RING finger domains, is essential for the degradation of F-dihydrofolate reductase, a model substrate of the N-end rule pathway of protein degradation. We have determined the function of PRT1 by expression in yeast (Saccharomyces cerevisiae). PRT1 can act as a ubiquitin protein ligase in the heterologous host. The identified substrates of PRT1 have an aromatic residue at their amino-terminus, indicating that PRT1 mediates degradation of N-end rule substrates with aromatic termini but not of those with aliphatic or basic amino-termini. Expression of model substrates in mutant and wild-type plants confirmed this substrate specificity. A ligase activity exclusively devoted to aromatic amino-termini of the N-end rule pathway is apparently unique to plants. The results presented also imply that other known substrates of the plant N-end rule pathway are ubiquitylated by one or more different ubiquitin protein ligases.  相似文献   

5.
6.
7.
Although Nα-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).  相似文献   

8.
Making sense of low oxygen sensing   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, the UBR1-encoded ubiquitin ligase (E3) of the N-end rule pathway mediates the targeting of substrate proteins in part through binding to their destabilizing N-terminal residues. The functions of the yeast N-end rule pathway include fidelity of chromosome segregation and the regulation of peptide import. Our previous work described the cloning of cDNA and a gene encoding the 200-kDa mouse UBR1 (E3alpha). Here we show that mouse UBR1, in the presence of a cognate mouse ubiquitin-conjugating (E2) enzyme, can rescue the N-end rule pathway in ubr1Delta S. cerevisiae. We also constructed UBR1(-/-) mouse strains that lacked the UBR1 protein. UBR1(-/-) mice were viable and fertile but weighed significantly less than congenic +/+ mice. The decreased mass of UBR1(-/-) mice stemmed at least in part from smaller amounts of the skeletal muscle and adipose tissues. The skeletal muscle of UBR1(-/-) mice apparently lacked the N-end rule pathway and exhibited abnormal regulation of fatty acid synthase upon starvation. By contrast, and despite the absence of the UBR1 protein, UBR1(-/-) fibroblasts contained the N-end rule pathway. Thus, UBR1(-/-) mice are mosaics in regard to the activity of this pathway, owing to differential expression of proteins that can substitute for the ubiquitin ligase UBR1 (E3alpha). We consider these UBR1-like proteins and discuss the functions of the mammalian N-end rule pathway.  相似文献   

17.
18.
缺氧诱导因子(hypoxia-inducible factor,HIF)是一类受氧调控的转录因子。其α亚基是氧敏感性亚基,包括HIF-1α、HIF-2α和HIF-3α,与β亚基形成异源二聚体,活化目标基因的表达以调节细胞对低氧的反应。HIF本身受到精细调节,包括转录组水平的调节,以及通过蛋白质翻译后修饰所进行的蛋白质水平的调节,以确保细胞对低氧压力产生适当反应。免疫应答常伴随局部组织的低氧状况,HIF是低氧环境中先天免疫和适应性免疫应答的重要调节因子。在天然免疫系统,HIF激活一系列与代谢相关的基因表达,调节中性粒细胞、巨噬细胞和树突状细胞的发育、极化和功能。对于适应性免疫,近年来的研究确立了HIF在CD4+T细胞分化和功能中的重要作用。本综述将重点讨论近年来有关HIF调节机制,及其在免疫细胞功能研究的进展。  相似文献   

19.
20.
microRNA(miRNA)是一类由20-24个核苷酸组成的小的非编码RNA,通常通过序列互补降解或抑制其靶标基因转录后的翻译过程,从而在转录后水平上调控基因的表达。miRNA在植物基因组中普遍存在,作为一类重要的调节因子参与到植物的生长发育与逆境响应中。目前,已有研究表明高温除了诱导植物编码基因表达发生改变之外,一些非编码RNA的表达也发生了显著改变,其中miRNA作为重要的非编码RNA,参与了植物的高温胁迫响应。对植物miRNA的合成途径,作用机制以及主要功能进行了扼要阐述,重点阐述了高温胁迫下植物miRNA的作用机制,旨在为mi RNA在植物抵抗高温胁迫中的研究与应用提供新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号