首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In the pars tuberalis of the hypophysis of Rana temporaria, which shows the ultrastructural characteristics of a polypeptide hormone secreting endocrine gland, seasonal changes of the ultrastructure are described. In accordance with the literature, these seasonal changes of ultrastructure are interpreted as the morphological expression of seasonal changes of endocrine activity of the pars tuberalis.  相似文献   

2.
The comparison of the hypophyseal pars tuberalis in active and in hibernating hedgehogs reveals different cytological characteristics in the specific secretory cells. In active animals, these cells show oval nuclei and the cytoplasm contains numerous secretory granules near or attached to the cell membrane, suggesting exocytotic release. In hibernating animals, the specific secretory cells are characterized by irregularly shaped and often invaginated nuclei. Clusters of secretory granules lying within the cytoplasm are often joined by lysosomes. These areas are observed to be encircled by cisterns of the endoplasmic reticulum. Degenerative processes in the structures sequestered in this way are interpreted as signs of crinophagy which has no equivalent in the cell types of the pars distalis.  相似文献   

3.
The pars tuberalis of the rat adenohypophysis was investigated by immunohistochemistry and electron microscopy at different stages of the peri- and postnatal development. A characteristic pattern of changes in thyroid-stimulating hormone immunoreactivity of pars tuberalis-specific secretory cells was observed with an increase in staining intensity after birth, a marked reduction in adulthood and a subsequent increase in senium. Electron microscopy showed age-dependent changes in the number of dictyosomes per cell, in the number of large lysosomes per area of cytoplasm and in the extension of the granular endoplasmic reticulum. The number of secretory granules per area of cytoplasm was maximal perinatally; there was no correlation between granule content and immunoreactivity. Thyrotropes of the pars distalis did not show comparable immunohistochemical or ultrastructural changes.  相似文献   

4.
The hypophysial pars tuberalis (PT) acts as an important interface between neuroendocrine brain centers (hypothalamus, pineal organ) and the pars distalis (PD) of the hypophysis. Recently, we have identified an endocannabinoid system in the PT of hamsters and provided evidence that 2-arachidonoylglycerol is a messenger molecule that appears to play an essential role in seasonal reproduction and prolactin release by acting on the cannabinoid receptors in the PD. We now demonstrate the enzymes involved in endocannabinoid synthesis and degradation, namely sn-1-selective diacylglycerol lipase α, N-acylphosphatidylethanolamine-specific phospholipase D, and monoacylglycerol lipase, in the PT of man by means of immunohistochemistry. High-performance liquid chromatography coupled with tandem mass spectrometry revealed 2-arachidonoylglycerol and other endocannabinoids in the human PT. Furthermore, we detected the expression of the cannabinoid receptor 1 (CB1), a primary receptor for endocannabinoids, in the PD. Double-immunofluorescence staining for CB1 and various hypophysial hormones or S-100, a marker for folliculostellate (FS) cells, revealed that CB1 immunoreactivity was mainly localized to corticotrophs and FS-cells. A limited number of lactotrophs and somatotrophs also showed CB1 immunoreactivity, which was however absent from gonadotrophs and thyrotrophs. Our data thus indicate that the human PT comprises an endocannabinoid system, and that corticotrophs and FS-cells are the main target cells for endocannabinoids. The functional significance of this newly discovered pathway remains to be elucidated in man; it might be related to the control of stress responses and/or reflect a remnant seasonal control of hypophysial hormonal secretion.  相似文献   

5.
The pars tuberalis (PT) is the only pituitary region in close contact with the medial-basal hypothalamus and bathed by cerebrospinal fluid (CSF). Although PT has long been recognized as an endocrine gland, certain aspects of its structure remain obscure. The present investigation has been designed to gain information concerning (1) the cellular organization of PT, (2) the PT/median eminence spatial relationship and (3) the exposure of various cell compartments of PT to CSF. Non-endocrine cells (S100-reactive) appear as the organizer of the PT architecture. The apical poles of these cells line large cistern-like cavities and the processes of these cells establish a close spatial relationship with PT-specific secretory cells, portal capillaries and tanycytes. The cisterns are also endowed with clusters of ciliated cells and with a highly electron-dense and PAS-reactive content. The unique spatial organization of endocrine and non-endocrine cells of the PT supports a functional relationship between both cell populations. PT endocrine cells display a hallmark of PT-specific cells, namely, the paranuclear spot, which is a complex structure involving the Golgi apparatus, a large pool of immature secretory granules and a centriole from which originates a single 9+0 cilium projecting to the intercellular channels. Horseradish peroxidase (HRP) injected into the CSF readily reaches the intercellular channels of PT and the inner channel of the single cilium and is incorporated by the endocytic machinery of the secretory cells. The PT endocrine cells, through their single 9+0 cilium, may act as sensors of the CSF. HRP also reaches the lumen of the cisterns, indicating that this PT compartment is also exposed to CSF. PT endocrine cells establish direct cell-to-cell contacts with hypothalamic β1 tanycytes, suggesting a second means of brain-PT communication.  相似文献   

6.
The pars tuberalis of the hypophysis of the Djungarian hamster, Phodopus sungorus, was investigated with regard to secretory activity by applying the tannic acid-Ringer perfusion technique. Two groups were maintained under long photoperiods (16 h light: 8 h dark) or short photoperiods (8 h light: 16 h dark), respectively. Perfusion with tannic acid showed that specific pars tuberalis cells release some of their secretory granules as indicated by typical exocytotic figures. The percentage of cells displaying exocytotic activity was significantly higher in the pars tuberalis of hamsters kept under long photoperiods. The number of exocytotic figures per single cell was not increased. These results provide further evidence for a secretory activity of the pars tuberalis and support the hypothesis of its involvement as a mediator between photoperiodic stimuli and the endocrine system.  相似文献   

7.
Summary Using indirect immunofluorescence with fourteen different antisera raised against pituitary hormones and peptides, we characterized immunochemically the cells of the sheep pars tuberalis. The presence of LH-and FSH-containing cells, shown in previous studies, was also observed in the present investigation. In addition, we found TSH-containing cells, never observed in sheep, and LPH-containing cells. The latter hormone has never been found in any studied species. It appeared that a small amount of perikarya (less than 20%) were immunolabelled and, that the sheep pars tuberalis contained a majority of immunonegative cells as in the guinea-pig, rabbit and rhesus monkey. This study may contribute to a better knowledge of the function of the sheep pars tuberalis.List of abbreviations ACTH adrenocorticotropin hormone - BSA bovine serum albumin - CGRP calcitonin gene-related peptide - FSH follicle stimulating hormone - GH growth hormone - HSA human serum albumin - LH luteinizing hormone - LH-RH luteinizing hormone-releasing hormone - LPH lipotropin hormone - Met-enk methionine enkephalin - NPY neuropeptide Y - POMC proopiomelanocortin - PRL prolactin - TSH thyreotrope stimulating hormone  相似文献   

8.
Using indirect immunofluorescence with fourteen different antisera raised against pituitary hormones and peptides, we characterized immunochemically the cells of the sheep pars tuberalis. The presence of LH- and FSH-containing cells, shown in previous studies, was also observed in the present investigation. In addition, we found TSH-containing cells, never observed in sheep, and beta LPH-containing cells. The latter hormone has never been found in any studied species. It appeared that a small amount of perikarya (less than 20%) were immunolabelled and, that the sheep pars tuberalis contained a majority of immunonegative cells as in the guinea-pig rabbit and rhesus monkey. This study may contribute to a better knowledge of the function of the sheep pars tuberalis.  相似文献   

9.
The pars tuberalis as a target of the central clock   总被引:4,自引:0,他引:4  
The pars tuberalis (PT) of the pituitary has emerged from being a gland of obscure and unknown function to a tissue of central importance to our understanding of how photoperiod regulates seasonal responses. The discovery of melatonin receptors on this gland first pointed to its involvement in seasonal physiology. However, the more recent demonstration of the expression of clock genes in the PT, such as Per1, has heightened interest in the gland. Recent work shows how photoperiod, through the hormone melatonin, affects the timing and amplitude of expression of the Per1 gene, as well as other genes such as Icer. The effect of photoperiod and melatonin on the expression of Per1 in the PT is distinct to its effects on the SCN, and this probably reflects distinct functions of the clock genes in the two tissues - acting as part of the biological clock in the SCN, but as an interval timing system within the PT. The changes in amplitude of Per1 gene expression in response to altered length of photoperiod have provided the first clues as to how the durational melatonin signal is decoded within the neuroendocrine system.  相似文献   

10.
11.
12.
Summary The aim of the present study was to test whether the luteinizing-hormone (LH) cells in the pars tuberalis (PT) of the rat and mouse respond to LH-releasing hormone (LHRH) as do those of the pars distalis. A part of the basal hypothalamus containing the pituitary stalk, median eminence and the pars tuberalis (H-PT), was dissected out and incubated in vitro.The LH-secreting capacity of the PT was investigated after removal of the pituitary body (i.e., partes distalis, intermedia and nervosa). First, some rat and mouse H-PT tissues were treated with synthetic LHRH (100ng/ml), while others were incubated without LHRH. After 24 h of incubation, variable amounts of LH release were detected in the medium. This LH discharge, however, was not LHRH-dependent but proportional to the number of PT LH cells that were immunohistochemically detected in each incubated tissue. Since there was marked individual variation in the number of LH cells in the PT, the LH levels in the incubation medium were next compared before and after LHRH treatment using the same H-PT of the rat. An effect of LHRH could not clearly be shown in this experiment.Finally, the cytological response of the PT to LHRH was investigated by incubating both the H-PT and pituitary body connected to the intact pituitary stalk. Immunohistochemical examination of LHRH-treated tissues after 24 h revealed that, in females of both rats and mice, hormone depletion occurred in LH cells of the pars distalis but not in those of the PT. These results indicate that although LH cells in the PT can release LH in vitro, their mode of hormone synthesis and/or discharge differs from that of LH cells in the pars distalis. Since there was a marked individual variation and small LH-secreting capacity by the PT tissue, it seems unlikely, at least in rats and mice, that LH of PT origin plays an important role in the normal physiological state.  相似文献   

13.
The hypophysial pars tuberalis (PT), an important interface between neuroendocrine brain centers (hypothalamus, pineal organ) and the pars distalis (PD) of the hypophysis, plays a central role in regulating seasonal reproduction and prolactin release. However, the signaling molecules that transmit photoperiodic information from the PT to the PD and control prolactin release (the so-called “tuberalins”) have not yet been identified, despite an intense search for more than three decades. Here, we demonstrate an endocannabinoid system in the PT of the Syrian hamster, a photoperiodic species. By means of in situ hybrization, the PT was found to express N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH), sn-1-selective diacylglycerol lipases (DAGLα and DAGLβ), and monoacylglycerol lipase (MAGL), enzymes involved in endocannabinoid synthesis and degradation. The expression of NAPE-PLD, FAAH, and DAGLα was confirmed by immunohistochemistry. Expression and protein levels of DAGLs controlling the synthesis of 2-arachidonoyl glycerol (2-AG), a major endocannabinoid, were upregulated in the PT of Syrian hamsters kept under long-day conditions. Consequently, 2-AG levels were increased in the PT of these hamsters. A primary target of 2-AG, the cannabinoid receptor 1 (CB1), was expressed in the PD. Double-immunolabeling revealed that most of the CB1-immunoreactive cells in the PD were folliculostellate cells that were also immunoreactive for S-100 protein. Thus, the PT comprises an endocannabinoid system, and 2-AG may act as a photoperiodic messenger from the PT to the PD for the regulation of hypophysial hormonal secretion.  相似文献   

14.
The hypophyseal pars tuberalis surrounds the median eminence and infundibular stalk of the hypothalamus as thin layers of cells. The pars tuberalis expresses MT1 melatonin receptor and participates in mediating the photoperiodic secretion of pituitary hormones. Both the rostral tip of Rathke’s pouch (pars tuberalis primordium) and the pars tuberalis expressed αGSU mRNA, and were immunoreactive for LH, chromogranin A, and TSHβ in mice. Hes genes control progenitor cell differentiation in many embryonic tissues and play a crucial role for neurulation in the central nervous system. We investigated the Hes1 function in outgrowth and differentiation of the pars tuberalis by using the markers for the pars tuberalis. In homozygous Hes1 null mutant embryos, the rostral tip was formed in the basal-ventral part of Rathke’s pouch at embryonic day (E)11.5 as well as in wild-type embryos. In contrast to the wild-type, the rostral tip of null mutants could not extend rostrally with age; it remained in the low extremity of Rathke’s pouch during E12.5–E13.5 and disappeared at E14.5, resulting in lack of the pars tuberalis. Development of the ventral diencephalon was impaired in the null mutants at early stages. Rathke’s pouch, therefore, could not link with the nervous tissue and failed to receive inductive signals from the diencephalon. In a very few mutant mice in which the ventral diencephalon was partially sustained, some pars tuberalis cells were distributed around the hypoplastic infundibulum. Thus, Hes1 is required for development of the pars tuberalis and its growth is dependent on the ventral diencephalon.  相似文献   

15.
Although most brain neurons are produced during embryonic and early postnatal development, recent studies clearly demonstrated in a wide range of species from invertebrates to humans that new neurons are added to specific brain structures throughout adult life. Hormones, neurotransmitters, and growth factors as well as environmental conditions modulate this neurogenesis. In this study, we address the role of sensory inputs in the regulation of adult neural progenitor cell proliferation in an insect model. In some insect species, adult neurogenesis occurs in the mushroom bodies, the main sensory integrative centers of the brain, receiving multimodal information and often considered as the analog of the vertebrate hippocampus. We recently showed that rearing adult crickets in enriched sensory and social conditions enhanced neuroblast proliferation in the mushroom bodies. Here, by manipulating hormonal levels and affecting olfactory and/or visual inputs, we show that environmental regulation of neurogenesis is in direct response to olfactory and visual stimuli rather than being mediated via hormonal control. Experiments of unilateral sensory deprivation reveal that neuroblast proliferation can be inhibited in one brain hemisphere only. These results, obtained in a relatively simple brain, emphasize the role of sensory inputs on stem cell division.  相似文献   

16.
The regulation of cell activity, growth and metabolism by a number of growth factor receptors and proto-oncogene products involves tyrosine kinase activity resulting in autophosphorylation of the receptors and production of phosphorylated tyrosine-containing protein substrates. The identification and precise localization of phosphotyrosine (PY)-containing proteins are first steps in elucidating the functional role of tyrosine kinases in the modulation of the central nervous system and related areas. In the present report, we describe PY-containing proteins in the median eminence and adjacent pars tuberalis of the rat adenohypophysis by immunocytochemistry using light and electron microscopy, and by Western blotting analysis. PY-immunoreactivity was found to be most intense throughout the cytoplasm of a population of epithelial pars tuberalis cells. Polyacrylamide gel electrophoresis and Western blotting of tissue extracts from various brain and pituitary regions demonstrated a general pattern of 4 major bands of PY-proteins, with an additional dense band representing a 44 kDa protein that was highly phosphorylated on tyrosines and that was exclusively found in the pars tuberalis. Additional investigation for the presence of insulin receptors, a tyrosine kinase previously correlated with the distribution of PY-proteins, demonstrated a receptor localization in axons and nerve terminals in the external and internal zone of the median eminence. However, the large amount of different PY-proteins present in the secretory cell population of the pars tuberalis could not be attributed to the insulin receptor. Our findings demonstrate that there is a large amount of cell-specific tyrosine kinase activity in the median eminence and contacting the pars tuberalis; these may play a significant role for transduction of biological signals or metabolic regulation in the neuroendocrine region.This paper is dedicated to Professor Dr. Leonhardt on the occasion of his 75th birthday  相似文献   

17.
18.
Summary The pars tuberalis of the adenohypophysis was investigated in three human fetuses at mid-gestation by electron microscopy or immunohistochemistry. In addition to gonadotrophs and thyrotrophs, identified by immunohistochemistry and ultrastructural morphology, electron microscopy revealed the existence of an additional differentiated cell type closely resembling pars tuberalis-specific cells known from other species. The role of this cell type in the human endocrine regulation remains to be elucidated.  相似文献   

19.
We have reported that the unique thyroid-stimulating hormone-immunoreactive cells (TSH cells) in the intact adult and fetal rat pars tuberalis (PT) show an intense spot-like TSH immunoreaction in the perinuclear region. The present study was designed to investigate the relationship between melatonin and these unique TSH cells. We classified TSH cells in the PT (PT-TSH cells), on the basis of immunoreactivity, into spot-like stained cells (SC) and whole cytoplasm stained cells (WC), and estimated the proportion of each TSH cell type to total cells in the experimental rats by morphometry. Chronic administration of melatonin to control rats leads to an increase of WC in number but a decrease of SC. On the other hand, the intensity of TSH immunoreactivity and the number of rat PT-TSH cells significantly decreased after pinealectomy and recovered by melatonin administration. Radioimmunoassay showed that melatonin treatment increased the TSH content in the PT. Moreover, electron microscopy showed that the number of TSH secretory granules in the PT-TSH cells increased in the melatonin-replaced rats. These results demonstrated that melatonin stimulates the accumulation of TSH in the rat PT-TSH cells via secretory granule formation and suggest that melatonin regulates TSH release from PT-TSH cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号