首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.  相似文献   

2.
REM sleep triggers a potent suppression of postural muscle tone - i.e., REM atonia. However, motor control during REM sleep is paradoxical because overall brain activity is maximal, but motor output is minimal. The skeletal motor system remains quiescent during REM sleep because somatic motoneurons are powerfully inactivated. Determining the mechanisms triggering loss of motoneuron function during REM sleep is important because breakdown in REM sleep motor control underlies sleep disorders such as REM sleep behavior disorder (RBD) and cataplexy/narcolepsy. For example, RBD is characterized by dramatic REM motor activation resulting in dream enactment and subsequent patient injury. In contrast, cataplexy a pathognomonic symptom of narcolepsy - is caused by the involuntary onset of REM-like atonia during wakefulness. This review highlights recent work from my laboratory that examines how motoneuron function is lost during normal REM sleep and it also identifies potential biochemical mechanisms underlying abnormal motor control in both RBD and cataplexy. First, I show that both GABAB and GABAA/glycine mediated inhibition of motoneurons is required for generating REM atonia. Next, I show that impaired GABA and glycine neurotransmission triggers the cardinal features of RBD in a transgenic mouse model. Last, I show that loss of an excitatory noradrenergic drive onto motoneurons is, at least in part, responsible for the loss of postural muscle tone during cataplexy in narcoleptic mice. Together, this research indicates that multiple transmitters systems are responsible for regulating postural muscle tone during REM sleep, RBD and cataplexy.  相似文献   

3.

Background

Rapid eye movement sleep (REMS) is characterized by activation of the cortical and hippocampal electroencephalogram (EEG) and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw) phasic activity during REMS. The trigeminal motor nucleus (Mo5), which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt), but also from the adjacent paramedian reticular area (PMnR). On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD) nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.

Methodology/Principal Findings

To test our hypothesis, we measured masseter electromyogram (EMG), neck muscle EMG, electrooculogram (EOG) and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt), but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.

Conclusions/Significance

These results indicate that (1) premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2) separate brainstem neural circuits control postural and cranial muscle phasic activity during REMS.  相似文献   

4.
Several investigators have observed that irregular breathing occurs during rapid-eye-movement (REM) sleep in healthy subjects, with ventilatory suppression being prominent during active eye movements [phasic REM (PREM) sleep] as opposed to tonic REM (TREM) sleep, when ocular activity is absent and ventilation more regular. Inasmuch as considerable data suggest that rapid eye movements are a manifestation of sleep-induced neural events that may importantly influence respiratory neurons, we hypothesized that upper airway dilator muscle activation may also be suppressed during periods of active eye movements in REM sleep. We studied six normal men during single nocturnal sleep studies. Standard sleep-staging parameters, ventilation, and genioglossus and alae nasi electromyograms (EMG) were continuously recorded during the study. There were no significant differences in minute ventilation, tidal volume, or any index of genioglossus or alae nasi EMG amplitude between non-REM (NREM) and REM sleep, when REM was analyzed as a single sleep stage. Each breath during REM sleep was scored as "phasic" or "tonic," depending on its proximity to REM deflections on the electrooculogram. Comparison of all three sleep states (NREM, PREM, and TREM) revealed that peak inspiratory genioglossus and alae nasi EMG activities were significantly decreased during PREM sleep compared with TREM sleep [genioglossus (arbitrary units): NREM 49 +/- 12 (mean +/- SE), TREM 49 +/- 5, PREM 20 +/- 5 (P less than 0.05, PREM different from TREM and NREM); alae nasi: NREM 16 +/- 4, TREM 38 +/- 7, PREM 10 +/- 4 (P less than 0.05, PREM different from TREM)]. We also observed, as have others, that ventilation, tidal volume, and mean inspiratory airflow were significantly decreased and respiratory frequency was increased during PREM sleep compared with both TREM and NREM sleep. We conclude that hypoventilation occurs in concert with reduced upper airway dilator muscle activation during PREM sleep by mechanisms that remain to be established.  相似文献   

5.
Rapid eye movement (REM) sleep is a distinct behavioral state characterized by an activated cortical and hippocampal electroencephalogram (EEG) and concurrent muscle atonia. Research conducted over the past 50 years has revealed the neuronal circuits responsible for the generation and maintenance of REM sleep, as well as the pathways involved in generating the cardinal signs of REM sleep such as cortical activation and muscle atonia. The generation and maintenance of REM sleep appear to involve a widespread network in the pons and medulla. The caudal laterodorsal tegmental nucleus (cLDT) and sublaterodorsal nucleus (SLD) within the dorsolateral pons contain REM-on neurons, and the ventrolateral periaqueductal grey (vlPAG) contains REM-off neurons. The interaction between these structures is proposed to regulate REM sleep amounts. The cLDT-SLD neurons project to the basal forebrain via the parabrachial-precoeruleus (PB-PC) complex, and this pathway may be critical for the EEG activation seen during REM sleep. Descending SLD glutamatergic projections activate the ventromedial medulla, and spinal cord interneurons mediate muscle atonia and suppress phasic muscle twitches in spinal musculature. In contrast, phasic muscle twitches in the masseter muscles may be driven by glutamatergic neurons in the rostral parvicellular reticular nucleus (PCRt); however, the brain region responsible for generating phasic twitches in the other cranial muscles including facial muscles and tongue are not clear.  相似文献   

6.
To evaluate whether sex differences in the proportions of fibers of different phenotypes in the masseter muscle might be the result of differences in the behavior of their motoneurons, we studied the firing patterns of masseter motoneurons in adult male and female rabbits. Activity in individual motoneurons was determined from high spatial resolution EMG recordings made during cortically evoked rhythmic activation of the masticatory muscles. Although some motoneurons could be said to fire according to slow-tonic or fast-phasic patterns, most did not. In both sexes a substantial range of median firing rates and median firing durations was found. In adult males, masseter motoneurons fired more rapidly than those recorded from adult females. No significant sex differences in motoneuron firing duration were found. These results are consistent with the hypothesis that androgen-induced differences in rabbit masseter muscle fiber phenotype are a reflection of differences in motoneuron firing rate. Whether this effect of androgen is directly upon the motoneurons or is the result of a response of muscle fibers to androgen remains to be investigated.  相似文献   

7.
Alae nasi electromyographic activity and timing in obstructive sleep apnea   总被引:1,自引:0,他引:1  
The alae nasi is an accessible dilator muscle of the upper airway located in the nose. We measured electromyograms (EMG) of the alae nasi to determine the relationship between their activity and timing to contraction of the rib cage muscles and diaphragm during obstructive apnea in nine patients. Alae nasi EMG were measured with surface electrodes and processed to obtain a moving time average. Contraction of the rib cage and diaphragm during apneas was detected with esophageal pressure. During non-rapid-eye-movement (NREM) sleep, there was a significant correlation in each patient between alae nasi EMG activity and the change in esophageal pressure. During rapid-eye-movement (REM) sleep, correlations were significantly lower than during NREM sleep. As the duration of each apnea increased, the activation of alae nasi EMG occurred progressively earlier than the change in esophageal pressure. We conclude that during obstructive apneas in NREM sleep, activity of the alae nasi increases when diaphragm and rib cage muscle force increases and the activation occurs earlier as each apneic episode progresses.  相似文献   

8.
Sleep bruxism (SB) is a sleep-related movement disorder, characterized by tooth grinding and/or clenching. The causes of SB range from psychosocial factors to an excessive sleep arousal response. Some studies showed that SB episodes during sleep are under the influences of transient activity of the brainstem arousal. Nocturnal groaning (NG) is a parasomnia characterized by an expiratory monotonous vocalization occurring during sleep, especially in REM sleep and during the second half of the night. The pathogenesis of NG remains still unclear and many hypotheses arose, ranging from the persistence of a vestigial ventilatory pattern rather than an expiratory upper airways' obstruction. Sleep microstructure fluctuation might modulate the NG, since the end of the NG episode usually is synchronized with a cortical arousal and an autonomic activation. Further studies should clarify the pathophysiology of SB and NG, especially when the two phenomena are associated.  相似文献   

9.
10.
The control exerted by inputs from periodontal mechanoreceptors (PMRs) on the tonic activity of 35 pairs of single motor units in the left masseter muscle was investigated with and without the presence of continuous pressure on the upper left central incisor tooth. Crosscorrelograms were computed to assess the temporal coupling between the discharges of the motor unit pairs. In the absence of continuous pressure, central peaks in the cross-correlograms revealed the presence of significant synchronous discharge in 16 out of the 35 pairs tested. In contrast, during PMR stimulation only nine pairs were found to discharge with a significant amount of synchronization. It is concluded that short-term synchronization due to common, partially common and synchronized inputs shared by the motoneurons was reduced whenever extraneous periodontal inputs were superimposed on the voluntary command. This indicates that the interneurons which mediate the periodontal inputs arising from one single tooth are not distributed widely throughout the masseter motoneuron pool. In contrast, it appears that periodontal inputs are liable to reduce the efficiency of common inputs distributed to the masseter motoneurons during voluntary contraction ("desynchronization").  相似文献   

11.
The control exerted by inputs from periodontal mechanoreceptors (PMRs) on the tonic activity of 35 pairs of single motor units in the left masseter muscle was investigated with and without the presence of continuous pressure on the upper left central incisor tooth. Cross-correlograms were computed to assess the temporal coupling between the discharges of the motor unit pairs. In the absence of continuous pressure, central peaks in the cross-correlograms revealed the presence of significant synchronous discharge in 16 out of the 35 pairs tested. In contrast, during PMR stimulation only nine pairs were found to discharge with a significant amount of synchronization. It is concluded that short-term synchronization due to common, partially common and synchronized inputs shared by the motoneurons was reduced whenever extraneous periodontal inputs were superimposed on the voluntary command. This indicates that the interneurons which mediate the periodontal inputs arising from one single tooth are not distributed widely throughout the masseter motoneuron pool. In contrast, it appears that periodontal inputs are liable to reduce the efficiency of common inputs distributed to the masseter motoneurons during voluntary contraction ("desynchronization").  相似文献   

12.
Sleep can be addressed across the entire hierarchy of biological organization. We discuss neuronal-network and regional forebrain activity during sleep, and its consequences for consciousness and cognition. Complex interactions in thalamocortical circuits maintain the electroencephalographic oscillations of non-rapid eye movement (NREM) sleep. Functional neuroimaging affords views of the human brain in both NREM and REM sleep, and has informed new concepts of the neural basis of dreaming during REM sleep -- a state that is characterized by illogic, hallucinosis and emotionality compared with waking. Replay of waking neuronal activity during sleep in the rodent hippocampus and in functional images of human brains indicates possible roles for sleep in neuroplasticity. Different forms and stages of learning and memory might benefit from different stages of sleep and be subserved by different forebrain regions.  相似文献   

13.
Tonic inhibition of some respiratory muscles occurs as part of the generalized muscle atonia of rapid-eye-movement sleep (REMS). A second type of inhibition of the diaphragm during REMS, fractionations, consists of brief pauses in the diaphragmatic electromyogram (DIA EMG) in association with phasic events. Because motor inhibition can occur as part of the startle response, and the brain is highly activated during REMS, we hypothesized that the neural basis of the fractionations might be activation of a startle network. To test this hypothesis, tone bursts (100 dB, 20-ms duration at 15-s intervals) were applied to cats at a fixed inspiratory level in the DIA moving average during REMS, non-rapid-eye-movement sleep (NREMS), and wakefulness. Parallel sham studies (no tone applied) were obtained for each state. The response of the DIA EMG was averaged over 100 ms by using the tone pulse as a trigger, and the following parameters of the DIA EMG were measured: latency to peak and/or nadir, increment or decrement in activity, and duration of peak and/or nadir. After a tone, all five animals studied displayed a profound suppression of DIA activity during REMS (latency to nadir 42.4 +/- 10.0 ms, duration of suppression 35.9 +/- 17.6 ms). Similarly, DIA activity was suppressed in all cats during NREMS (latency to nadir 40.9 +/- 13.3 ms, duration 23.9 +/- 13.4 ms). An excitatory response was observed in only two cats during NREMS and wakefulness. The similarity of startle-induced DIA EMG pauses to spontaneous fractionations of DIA activity during REMS suggests that the latter result from activation of a central startle system.  相似文献   

14.
Simultaneous recordings of the diaphragmatic electromyogram (EMG) were made from two separate regions of the costal diaphragm in six normal cats. The diaphragmatic activities were always synchronous and the amplitudes and rates of rise were similar during slow-wave sleep. In contrast, during natural rapid-eye-movement (REM) sleep, different activity was often present in the two leads. These differences were in the time of onset and offset, as well as in the amplitude and spike patterns, and occurred in approximately 5-20% of the diaphragmatic bursts averaged over the entire REM sleep period. With respect to eye movement density, the rate of differential activation was higher during periods of high density (26%) than in the absence of eye movements (1%) in the four animals for which these data were available. Differential activation of portions of the costal diaphragm is apparently a normal event of REM sleep. This could result from descending state-specific phasic neuronal activity that bypasses the medullary respiratory generator. Differential activation of portions of the diaphragm could contribute to disordered ventilation during REM sleep.  相似文献   

15.

Sleep related bruxism (SB) is the grinding of teeth during sleep and may also be associated with various sleep disorders. However, little is known about sleep structures and disturbances of SB. This study aims to further understand sleep architectures using overnight polysomnography (PSG) in patients with SB. We analyze sleep parameters and architectures in 33 healthy subjects and 25 patients with SB. PSG and sleep questionnaires measured sleep variables including proportions of rapid eye movement (REM) sleep, non-REM sleep (N1, N2 and N3), latency to sleep onset, sleep efficiency, wake after sleep onset (WASO), apnea hypopnea index (AHI), respiratory disturbance index (RDI), and periodic limb movement index (PLMI) during sleep for both groups. Sleep efficiency and the proportion of N3 in the SB group were significantly lower than in the control group (P < 0.05). In addition latency to onset of sleep and WASO were markedly increased in the SB group (P < 0.05). AHI, RDI, and PLMI showed no differences between the groups. Epworth Sleepiness Scale was significantly higher in the SB group than in the control group (P < 0.05). In contrast to previous studies, we conclude that patients with SB are not good sleepers based on PSG study. Further studies are required to assess the relationship between sleep quality and the severity of SB.

  相似文献   

16.
At pupation in Manduca sexta, accessory planta retractor muscles and their motoneurons degenerate in segment-specific patterns. Accessory planta retractor muscles in abdominal segments 2 and 3 survive in reduced form through the pupal stage and degenerate after adult emergence. Electromyographic and electrophysiological recordings show that these accessory planta retractor muscles participate in a new, rhythmic `pupal motor pattern' in which all four muscles contract synchronously at ∼4 s intervals for extended bouts. Accessory planta retractor muscle contractions are driven by synaptic activation of accessory planta retractor motoneurons and are often accompanied by rhythmic activity in intersegmental muscles and spiracular closer muscles. The pupal motor pattern is influenced by descending neural input although isolated abdominal ganglia can produce a pupal motor pattern-like rhythm. The robust pupal motor pattern first seen after pupal ecdysis weakens during the second half of pupal life. Anemometric recordings indicate that the intersegmental muscle and spiracular closer muscle component of the pupal motor pattern produces ventilation. Accessory planta retractor muscle contractions lift the flexible abdominal floor, to which the developing wings and legs adhere tightly. We hypothesize that, by a bellows-like action, the accessory planta retractor muscle contractions circulate hemolymph in the appendages. Morphometric analysis shows that dendritic regression is similar in accessory planta retractor motoneurons with different pupal fates, and that accessory planta retractor motoneurons begin to participate in the pupal motor pattern while their dendrites are regressed. Accepted: 29 March 1998  相似文献   

17.
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). Here, we tested four hypotheses in unanesthetized, spontaneously breathing rats using radiotelemetry for EEG and diaphragm electromyography (Dia EMG) activity: 1) AIH induces LTF in Dia EMG activity; 2) diaphragm LTF (Dia LTF) is more robust during sleep vs. wakefulness; 3) AIH (or repetitive AIH) disrupts natural sleep-wake architecture; and 4) preconditioning with daily AIH (dAIH) for 7 days enhances Dia LTF. Sleep-wake states and Dia EMG were monitored before (60 min), during, and after (60 min) AIH (10, 5-min hypoxic episodes, 5-min normoxic intervals; n = 9), time control (continuous normoxia, n = 8), and AIH following dAIH preconditioning for 7 days (n = 7). Dia EMG activities during quiet wakefulness (QW), rapid eye movement (REM), and non-REM (NREM) sleep were analyzed and normalized to pre-AIH values in the same state. During NREM sleep, diaphragm amplitude (25.1 ± 4.6%), frequency (16.4 ± 4.7%), and minute diaphragm activity (amplitude × frequency; 45.2 ± 6.6%) increased above baseline 0-60 min post-AIH (all P < 0.05). This Dia LTF was less robust during QW and insignificant during REM sleep. dAIH preconditioning had no effect on LTF (P > 0.05). We conclude that 1) AIH induces Dia LTF during NREM sleep and wakefulness; 2) Dia LTF is greater in NREM sleep vs. QW and is abolished during REM sleep; 3) AIH and repetitive AIH disrupt natural sleep patterns; and 4) Dia LTF is unaffected by dAIH. The capacity for plasticity in spinal pump muscles during sleep and wakefulness suggests an important role in the neural control of breathing.  相似文献   

18.
The neural control of the accessory respiratory muscles regulating upper airway patency is poorly understood. This is particularly true with regard to the declines in electromyographic (EMG) activity of upper airway muscles during sleep. To specify the cellular mechanisms causing decreased upper airway muscle tone during sleep, we used an established pharmacological model of rapid eye movement (REM) sleep. With this model, a REM sleep-like state was reliably produced by microinjecting the cholinergic agonist carbachol directly into the pontine reticular formation of the cat. EMG recording were taken from the posterior cricoarytenoid (PCA) muscles of the larynx during wakefulness and the carbachol-induced, REM sleep-like state. This experimental model had not been previously used to study the neuropharmacological control of the upper airway. The results revealed a dose-dependent decrease in PCA muscle tone caused by pontine microinjections of carbachol. To investigate the cholinergic specificity of these effects, the muscarinic cholinergic antagonist pirenzepine was centrally administered before carbachol. Pirenzepine pretreatment effectively blocked the carbachol-induced, REM sleep-like state and attendant changes in muscle tone. These results specify for the first time that muscarinic cholinergic mechanisms within the pontine reticular formation can causally mediate state-dependent hypotonia in accessory respiratory muscles of the upper airway.  相似文献   

19.
Upper airway dilator activity during sleep appears to be diminished under conditions of enhanced sleep propensity, such as after sleep deprivation, leading to worsening of obstructive sleep apnea (OSA). Non-rapid eye movement (NREM) sleep propensity originates in sleep-active neurons of the preoptic area (POA) of the hypothalamus and is facilitated by activation of POA warm-sensitive neurons (WSNs). We hypothesized that activation of WSNs by local POA warming would inhibit activity of the posterior cricoarytenoid (PCA) muscle, an airway dilator, during NREM sleep. In chronically prepared unrestrained cats, the PCA exhibited inspiratory bursts in approximate synchrony with inspiratory diaphragmatic activity during waking, NREM, and REM. Integrated inspiratory PCA activity (IA), peak activity (PA), and the lead time (LT) of the onset of inspiratory activity in PCA relative to diaphragm were significantly reduced in NREM sleep and further reduced during REM sleep compared with waking. Mild bilateral local POA warming (0.5-1.2 degrees C) significantly reduced IA, PA, and LT during NREM sleep compared with a prewarming NREM baseline. In some animals, effects of POA warming on PCA activity were found during waking or REM. Because POA WSN activity is increased during spontaneous NREM sleep and regulates sleep propensity, we hypothesize that this activation contributes to reduction of airway dilator activity in patients with OSA.  相似文献   

20.
Sleep, especially rapid-eye-movement sleep, causes fundamental modifications of respiratory muscle activity and control mechanisms, modifications that can predispose individuals to sleep-related breathing disorders. One of the most common of these disorders is obstructive sleep apnea (OSA) that affects approximately 4% of adults. OSA is caused by repeated episodes of pharyngeal airway obstruction that can occur hundreds of times per night, leading to recurrent asphyxia, arousals from sleep, daytime sleepiness, and adverse cardiovascular and cerebrovascular consequences. OSA is caused by the effects of sleep on pharyngeal muscle tone in individuals with already narrow upper airways. Moreover, since OSA occurs only in sleep, this disorder by definition is a state-dependent process ultimately caused by the influence of sleep neural mechanisms on the activity of pharyngeal motoneurons. This review synthesizes recent findings relating to control of pharyngeal muscle activity across sleep-wake states, with special emphasis on the influence of neuromodulators acting at the hypoglossal motor nucleus that inervates the genioglossus muscle of the tongue. The results of such basic physiological studies may be relevant to identifying and developing new pharmacological strategies to augment pharyngeal muscle activity in sleep, especially rapid-eye-movement sleep, as potential treatments for OSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号