首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different temperatures and pH values on the hydrolysis of xylan by culture fluids of five strains of the lower fungi was determined. Xylan in such natural substrates as straw and corn-cobs was also subjected to enzymatic hydrolysis. The culture filtrate of the most active strain contained, besides xylanolytic enzymes, also cellulolytic, proteolytic and pectinolytic enzymes.  相似文献   

2.
The objective of this study was to evaluate the potential of eight fungal isolates obtained from soils in rice crops for straw degradation in situ. From the initial eight isolates, Pleurotus ostreatus T1.1 and Penicillium sp. HC1 were selected for further characterization based on qualitative cellulolytic enzyme production and capacity to use rice straw as a sole carbon source. Subsequently, cellulolytic, xylanolytic, and lignolytic (Pleurotus ostreatus) activity on carboxymethyl cellulose, oat xylan, and rice straw with different nitrogen sources was evaluated. From the results obtained it was concluded both isolates are capable to produce enzymes necessary for rice straw degradation. However, their production is dependent upon carbon and nitrogen source. Last, it was established that Pleurotus ostreatus T1.1 and Penicillium sp. HC1 capability to colonize and mineralize rice straw, in mono-and co-culture, without affecting nitrogen soil content.  相似文献   

3.
4.
The distribution of the enzymes of cellulose and xylan metabolism namely endo-beta-1,4-glucanase, beta-glucosidase, endo-beta-1,4-xylanase and beta-xylosidase activities, in Reticulitermes speratus (Kolbe) was measured both in the salivary glands and in the major gut sections and along the length of the gut in freshly collected termites. The majority of the endo-beta-1,4-glucanase activity (77.8%) was found in the salivary glands which also contained 23.9% of the beta-glucosidase activity. At least 70% of the remaining activity was located in the anterior section of the hindgut. A small amount of endo-beta-1,4-xylanase activity (2.4%), but no beta-xylosidase activity, was present in the salivary glands. The majority of these activities were in the anterior section of the hindgut. The RQ of freshly collected termites at 25 degrees C was 1.03+/-0.01. Maintaining termites for 16 days on wood, cellulose and xylan showed that the RQ values of termites fed on wood or xylan were not significantly different from those of freshly collected termites but significantly increased when maintained on cellulose. The RQ of starved termites after 11 days was 0.81+/-0.02. There were three effects on protozoan populations of feeding termites xylan for 20 days. One species, Dinenympha parva was not affected, while five others, Pyrsonympha grandis, Holomastigotes elongatum, Dinenympha rugosa, Dinenympha leidy and Dinenympha porteri survived for 20 days but slowly decreased in numbers. The numbers of P. grandis and D. leidy surviving for 20 days were significantly different from those in starved termites. The third group comprising the two large species, Teratonympha mirabilis and Trichonympha agilis and three small species, Pyrsonympha modesta, Dinenympha exilis and Dinenympha nobilis disappeared within 15 days as in starved termites. It is suggested that protozoa in the first two groups are xylanolytic. Protozoan populations on wood and cellulose diets were not markedly affected. Selective removal of the protozoa by u.v. irradiation led to the loss of xylanolytic activity and a life span comparable to starved termites. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

5.
Plant cell wall-degrading enzymes produced by microorganisms possess important biotechnological applications, including biofuel production. Some anaerobic bacteria are able to produce multienzymatic complexes called cellulosomes while filamentous fungi normally secrete individual hydrolytic enzymes that act synergistically for polysaccharide degradation. Here, we present evidence that the fungus Trichoderma harzianum, cultivated in medium containing the agricultural residue sugarcane bagasse, is able to secrete multienzymatic complexes. The T. harzianum secretome was firstly analyzed by 1D-BN (blue native)-PAGE that revealed several putative complexes. The three most intense 1D-BN-PAGE bands, named complexes [I], [II], and [III], were subsequently subjected to tricine SDS-PAGE that demonstrated that they were composed of smaller subunits. Zymographic assays were performed using 1D-BN-PAGE and 2D-BN/BN-PAGE demonstrating that the complexes bore cellulolytic and xylanolytic activities. The complexes [I], [II], and [III] were then trypsin digested and analyzed separately by LC-MS/MS that revealed their protein composition. Since T. harzianum has an unsequenced genome, a homology-driven proteomics approach provided a higher number of identified proteins than a conventional peptide-spectrum matching strategy. The results indicate that the complexes are formed by cellulolytic and hemicellulolytic enzymes and other proteins such as chitinase, cutinase, and swollenin, which may act synergistically to degrade plant cell wall components.  相似文献   

6.
The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.  相似文献   

7.
The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.  相似文献   

8.
Trichoderma harzianum is an effective biocontrol agent of several important plant pathogenic fungi. This Trichoderma species attacks other fungi by secreting lytic enzymes, including beta-1,3-glucanase and chitinolytic enzymes. Superior biocontrol potential may then be found in strains having a high capacity to produce these enzymes. We have therefore evaluated the capacity of six unidentified Trichoderma spp. isolates to produce chitinolytic enzymes and beta-1,3-glucanases in comparison with T. harzianum 39.1. All six isolates demonstrated substantial enzyme activity. However, while the isolates hereafter called T2, T3, T5, and T7 produced lower amounts of enzymes, the activity of isolates T4 and T6 were 2-3 fold higher than that produced by T. harzianum 39.1. A chitinase produced by the T6 isolate was purified by a single ion-exchange chromatography step and had a molecular mass of 46 kDa. The N-terminal amino-acid sequence showed very high homology with other fungal chitinases. Its true chitinase activity was demonstrated by its action on chitin and the failure to hydrolyze laminarin and p-nitrophenyl-beta-N-acetylglucosaminide. The hydrolytic action of the purified chitinase on the cell wall of Sclerotium rolfsii was convincingly shown by electron microscopy studies. However, the purified enzyme had no effect on the cell wall of Rhizoctonia solani.  相似文献   

9.
Filamentous fungi from the genus Trichoderma have been widely investigated due to their considerable production of important biotechnological enzymes. Previous studies have demonstrated that the T. harzianum strain IOC-3844 has a high degree of cellulolytic activity. After excluding the native signal peptide, the open reading frame of the T. harzianum endoglucanase III enzyme was cloned in the expression vector pPICZαA, enabling protein secretion to the culture medium. The recombinant plasmid was used to transform Pichia pastoris. Recombinant expression in the selected clone yielded 300 mg pure enzyme per liter of induced medium. The recombinant enzyme proved to be active in a qualitative analysis using Congo red. A quantitative assay, using dinitrosalicylic acid, revealed a high degree of activity at pH 5.5 and around 48°C. This information contributes to our understanding of the cellulolytic repertory of T. harzianum and the determination of a set of enzymes that can be incorporated into mixes for second-generation ethanol production.  相似文献   

10.
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.  相似文献   

11.
Fourteen fungi (primarily representing mycoparasitic and biocontrol fungi) were tested for their ability to grow on and degrade cell walls (CWs) of an oomycete (Pythium ultimum), ascomycete (Fusarium equisetii), and basidiomycete (Rhizoctonia solani), and their hydrolytic enzymes were characterized. Protein was detected in the cultural medium of eleven of the test isolates, and these fungi significantly degraded CWs over the 14-day duration of the experiment. In general, a greater level of CW degradation occurred for F. equisetii and P. ultimum than for R. solani. Fungi that degraded F. equisetii CWs were Coniothyrium minitans, Gliocladium roseum, Myrothecium verrucaria, Talaromyces flavus, and Trichoderma harzianum. Taxa degrading P ultimum CWs included Chaetomium globosum, Coniothyrium minitans, M. verrucaria, Seimatosporium sp., Talaromyces flavus, Trichoderma hamatum, Trichoderma harzianum, and Trichoderma viride. Production of extracellular protein was highly correlated with CW degradation. Considerable variation in the molecular weights of CW-degrading enzymes were detected among the test fungi and the CW substrates in zymogram electrophoresis. Multivariate analysis between CW degradation and hydrolysis of barley beta-glucan (beta1,3- and beta1,4-glucanases), laminarin (beta1,3- and beta1,6-glucanases), carboxymethyl cellulose (endo-beta1,4-glucanases), colloidal chitin (chitinases), and chitosan (chitosanases) was conducted. For F. equisetii CWs, the regression model accounted for 80% of the variability, and carboxymethyl cellulases acting together with beta-glucanases contributed an R2 of 0.52, whereas chitinases and beta-glucanases alone contributed an R2 of 0.11 and 0.12, respectively. Only 61% of the variability observed in the degradation of P. ultimum CWs was explained by the enzyme classes tested, and primarily beta-glucanases (R2 of 0.53) and carboxymethyl cellulases (R2 of 0.08) alone contributed to CW break down. Too few of the test fungi degraded R. solani CWs to perform multivariate analysis effectively. This study identified several fungi that degraded ascomyceteous and oomyceteous, and to a lesser extent, basidiomycetous CWs. An array of enzymes were implicated in CW degradation.  相似文献   

12.
Phytopathogenic fungi can degrade xylan, an abundant hemicellulose in plant cell walls, by the coordinate action of a group of extracellular enzymes. Among these, endo-beta-1,4-xylanases carry out the initial breakdown by cleaving internal bonds in the polymer backbone. We have isolated and characterized a gene, xyn11A, coding for an endo-beta-1,4-xylanase belonging to family 11 of glycosyl hydrolases. xyn11A was shown to be induced by xylan and repressed by glucose and to be expressed in planta. The disruption of xyn11A caused only a moderate decrease, about 30%, in the level of extracellular endo-beta-1-4-xylanase activity and in the growth rate, with beechwood xylan as the only carbon source. However, deletion of the gene had a more pronounced effect on virulence, delaying the appearance of secondary lesions and reducing the average lesion size by more than 70%. Reintroducing the wild-type gene into the mutant strains reversed this phenotype back to wild type.  相似文献   

13.
ABSTRACT: INTRODUCTION: In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. RESULTS: We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-beta-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-beta-1,4-xylanase activity was exclusively detected in larvae. CONCLUSION: Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles do not degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae and not in adults indicates that larvae (pre-) digest plant cell wall structures exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi). This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.  相似文献   

14.
Miniaturized fungal cultivation and enzyme assays were developed. Cultivation for enzyme production was performed in 50 mL conical tubes. In addition, the miniaturized enzyme assays reduced the amount of enzymes and reagents necessary. These procedures can be adopted in screening fungi to determine if they produce cellulolytic and xylanolytic enzymes.  相似文献   

15.
Abstract Two filamentous fungi, Trichoderma harzianum and Trichoderma viride , were compared for their ability to synthesize lipids on different carbon and nitrogen sources. Three culture media were selected for each strain after preliminary screening. All the test media were nitrogen-deficient (C/N = 60) so as to stimulate lipid accumulation. For both microorganisms the glucose-ammonium sulphate medium was the most conducive to lipid production: a lipid accumulation of 17% (w/w) of biomass dry weight was obtained for T. harzianum and of 32% (w/w) of biomass dry weight for T. viride . In sucrose-sodium nitrate medium T. harzianum was able to accumulate almost 25% (w/w) of its biomass in lipid form. However the small quantity of biomass produced (2 g dry weight/l) limited the quantity of lipid obtained. Neutral lipids, free fatty acids and phospholipids were monitored during 8 days of cultivation of the two fungi.  相似文献   

16.
Yasuo Tanaka 《Hydrobiologia》1991,220(2):119-129
Microbial colonization and its relation to the decomposition of reed (Phragmites communis) leaf litter were studied in the littoral area of a saline lake from autumn to summer using litter bag method. There was considerable fungal population on the leaves at the beginning of submergence. These fungi were probably terrestrial in origin. The fungal population rapidly disappeared few days after submergence, when bacteria, including cellulolytic and xylanolytic types, proliferated. Associated with this rapid colonization of bacteria, decomposition rates of cellulose and xylan increased. The rates declined from day 39 to day 100 with decreasing water temperature, though cellulolytic and xylanolytic bacteria maintained a sizeable population until day 150. A community of cellulolytic and xylanolytic fungi increased steeply after day 150. It coincided with a second increase in decomposition rate. These results suggest that the principal decomposers of reed leaf litter were bacteria in the initial phase and fungi in the later phase of the experiment.  相似文献   

17.
The interaction between Trichoderma harzianum and the soilborne plant pathogen Pythium ultimum was studied by electron microscopy and further investigated by gold cytochemistry. Early contact between the two fungi was accompanied by the abnormal deposition of a cellulose-enriched material at sites of potential antagonist penetration. The antagonist displayed the ability to penetrate this barrier, indicating that cellulolytic enzymes were produced. However, the presence of cellulose in the walls of severely damaged Pythium hyphae indicated that cellulolytic enzymes were not the only critical traits involved in the antagonistic process. The marked alteration of the (beta)-1,3-glucan component of the Pythium cell wall suggested that (beta)-1,3-glucanases played a key role in the process.  相似文献   

18.
Agricultural waste products are potential resources for the production of a number of industrial compounds, including biofuels. Basidiomycete fungi display a battery of hydrolytic enzymes with prospective use in lignocellulosic biomass transformation, however little work has been done regarding the characterization of such activities. Growth in several lignocellulosic substrates (oak and cedar sawdust, rice husk, corn stubble, wheat straw and Jatropha seed husk) and the production of cellulases and xylanases by two basidiomycete fungi: Bjerkandera adusta and Pycnoporus sanguineus were analyzed. Growth for P. sanguineus was best in rice husk while corn stubble supported the highest growth rate for B. adusta. Among the substrates tested, cedar sawdust produced the highest cellulolytic activities in both fungal species, followed by oak sawdust and wheat straw. Xylanolytic activity was best in oak and cedar sawdust for both species. We found no correlation between growth and enzyme production. Zymogram analysis of xylanases and cellulases showed that growth in different substrates produced particular combinations of protein bands with hydrolytic activity.  相似文献   

19.
In this study, basidiomycete isolates that possessed a strong ability to degrade chromated copper arsenate (CCA)-treated wood were characterized. These fungal isolates, which were collected from CCA-treated pine log wastes, showed no recognizable morphological properties on culture media. Nucleotide sequence analysis of the large subunit rDNA of the isolates revealed that they were one species. Based on the high sequence similarity (>95%) and close phylogenetic relationship with several known species of Crustoderma, the fungal isolates characterized in this study were classified as a Crustoderma sp. In a wood degradation test, Crustoderma isolate KUC8611 produced a remarkably higher weight loss in CCA-treated Pinus radiata (68.7%), Pseudotsuga menziesii (39.7%), and Tsuga heterophylla (38.5%) wood than other evaluated basidiomycete species, including Crustoderma flavescens and Crustoderma corneum. In addition, extracellular enzymes for cellulose and protein degradation were detected when the isolates were cultured in chromogenic media, which supports the finding that isolate KUC8611 is a wood degrader. Furthermore, an in vitro test for metal tolerance revealed that isolate KUC8611 showed strong arsenic tolerance, but that it could not tolerate copper. Finally, isolate KUC8611 produced lower amounts of oxalic acid than copper-tolerant fungi such as Fomitopsis palustris and Antrodia vaillantii. To the best of our knowledge, this is the first study to report the degradation of CCA-treated wood by a Crustoderma species.  相似文献   

20.
The genus Trichoderma comprises a group of filamentous ascomycetes that are now widely used in industrial applications because of their ability to produce extracellular hydrolases in large amounts. In addition, strong inducible promoters together with high secretory capacity have made Trichoderma an attractive host for heterologous protein production. Several promoters of genes encoding hydrolytic enzymes have been investigated in detail regarding their cis-acting elements and trans-acting factors. Potent inducer molecules, for both xylanolytic and cellulolytic enzyme systems, have been identified and characterized. Furthermore, models for the recognition of the insoluble substrates cellulose and xylan have been developed based on a large set of experiments. This mini-review summarises the considerable amount of data accumulated over the past three decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号