首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As black swallow-wort, Vincetoxicum nigrum L. Moench, and pale swallow-wort, V. rossicum (Kleopow) Barbar., spread throughout the northeastern United States and southern Canada, there is concern about the impact of these invasive plants on populations of the native North American monarch butterfly Danaus plexippus L. Recent laboratory studies in New York and Ontario, Canada, have found little or no oviposition by monarch butterflies on the two Vincetoxicum species. In Rhode Island, we found 10.5-21.7% oviposition on Vincetoxicum species relative to common milkweed Asclepias syriaca L. in choice tests and 11.9-20.3% in no-choice tests in 2 yr of laboratory testing. These results were supported by field cage trials where monarchs given a choice between V. nigrum and A. syriaca laid 24.5% of their eggs on V. nigrum. In surveys of three pasture fields in Rhode Island where relative coverage of A. syriaca exceeded that of V. nigrum by a 0.77:0.23 ratio, 15.4% of monarch eggs were found on V. nigrum plants. In V. nigrum stands with very little A. syriaca (6.25 stems/ha), monarch egg density on V. nigrum was found to be over five times greater than in the three mixed pasture fields. In none of our laboratory or field evaluations was there any survival of monarch larvae on Vincetoxicum species. It seems that in Rhode Island, Vincetoxicum species serve as an oviposition sink for monarch butterflies. These findings suggest that East Coast butterflies may differ in host selection from those in central New York and southern Ontario, Canada.  相似文献   

2.
Exploratory surveys were conducted in Europe to locate potential biological control agents of Vincetoxicum nigrum and Vincetoxicum rossicum and to collect known specialist herbivores of Vincetoxicum hirundinaria (Abrostola asclepiadis, Chrysolina a. asclepiadis, Eumolpus asclepiadeus and Euphranta connexa). Development of the most abundant herbivores found attacking leaves, roots, and developing seeds was evaluated in the laboratory on three Vincetoxicum spp. Field surveys revealed that the highest diversity of herbivores was associated with the abundant and widespread V. hirundinaria. No new herbivores were reported from V. hirundinaria or V. nigrum, but the leaf‐feeding noctuid Hypena opulenta was recorded for the first time attacking V. rossicum and V. scandens in Ukraine. Based upon larval survival and development and adult fecundity, the leaf feeders A. asclepiadis, C. a. asclepiadis, and H. opulenta, perform better on V. nigrum and V. rossicum than on V. hirundinaria. Larval performance of the root feeder E. asclepiadeus followed a similar pattern, but adult fecundity of this insect did not vary among host plant species. Immature development time of the pre‐dispersal seed feeder E. connexa is similar among hosts, but larvae grow larger on V. nigrum and V. hirundinaria than on V. rossicum. All herbivores are promising biological control agents of Vincetoxicum in North America and we have prioritized host range testing with H. opulenta and E. asclepiadeus.  相似文献   

3.
Abstract Contarinia comprises one of the largest genera among gall forming midges of Cecidomyiidae, where identification and species relationships are uncertain. Using data on phenological development, morphometric relationships and mitochondrial DNA, the status of two isomorphic species, C. vincetoxici and C. asclepiadis , which attack the perennial herb Vincetoxicum hirundinaria , were investigated. Data show that they are two distinct species. In rearing experiments, the two gall midges were shown to have different times of adult emergence. Small differences in wing morphology were revealed that separate the two species from each other, as well as from C. loti , the type species of Contarinia . Sequence differences in the mitochondrial cytochrome b gene corroborate the specific status of C. vincetoxici and C. asclepiadis . Furthermore, a phylogenetic analysis, also including three other Contarinia species, showed that the two gall midges on V. hirundinaria are not even the most closely related species, suggesting two separate evolutionary colonizations of the host plant.  相似文献   

4.
The potential of two invasive herbaceous vines Vincetoxicum nigrum (L.) Moench and Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae) to reduce monarch butterfly (Danaus plexippus L.) (Lepidoptera: Nymphalidae, Danainae) populations was investigated by evaluating oviposition selection in adult monarch butterflies and larval feeding preference in choice tests comparing the native host plant of monarch butterflies, Asclepias syriaca L. (Asclepiadaceae) and the two non‐indigenous Vincetoxicum species. In both choice and no‐choice tests, no eggs were oviposited on either of the two Vincetoxicum species whereas over 66 eggs per female were oviposited on A. syriaca plants. All first instar larvae allowed to feed on A. syriaca for 48 h survived while a significantly lower proportion survived on V. rossicum (44%) and V. nigrum (14%). Mean weight of larvae that did survive on the Vincetoxicum species was significantly lower than the mean weight of larvae that fed on A. syriaca. The mean weight of surviving larvae, however, did not differ between the two Vincetoxicum species. The mean proportion of leaves consumed by larvae feeding on A. syriaca was significantly greater than the mean proportion of leaves consumed by larvae feeding on either Vincetoxicum species. Findings from this research indicate that V. rossicum and V. nigrum are not viable hosts of monarch butterflies and are likely to pose little direct threat to their populations as oviposition sinks. The ability of these highly aggressive plants, however, to out‐compete and displace the native host of monarchs, A. syriaca, may pose a more serious threat. The potential of monarch populations to adapt to the two Vincetoxicum species as host plants over the long‐term is discussed.  相似文献   

5.
The alien invasive vines Vincetoxicum rossicum and Vincetoxicum nigrum (swallow-wort) are of major concern in eastern North America, where both species invade forested landscapes and threaten faunal and plant diversity. Among the few native natural enemies reported in Eurasia, the specialist chrysomelid, Chrysochus (Eumolpus) asclepiadeus (Coleoptera; Chrysomelidae), feeds on Vincetoxicum both above ground (as adults) and below ground (as larvae). The goal of our study was to assess the potential for using this beetle to manage invasive Vincetoxicum spp. in North America by quantifying the impact of herbivory by C. asclepiadeus on Vincetoxicum and determining whether this effect was influenced by plant density (“Allee effect”). Experimental work was carried out using a split plot design in the field in southern France. Pots of V. nigrum and V. hirundinaria, a substitute for V. rossicum, were planted at high (255 plants/m2), medium (127 plants/m2), and low (32 plants/m2) plant densities, and received treatments of 0 (control), 2 or 4 C. asclepiadeus adult beetles/pot. Leaf damage, root and shoot biomass, and quantity of seeds were measured after 4 weeks of adult feeding. Densities of 2 and 4 beetles/pot caused similar damage, with significant reductions in plant biomass at low plant density. While V. hirundinaria increased allocation of resources to roots in response to herbivory, V. nigrum did not. Seed production was greatest for both species grown at low plant densities, but only V. nigrum produced fewer seeds in response to herbivory. Our results, based on the effects of herbivory by C. asclepiadeus adults, suggest that if this beetle were to be introduced into North America for the management of Vincetoxicum spp. such as V. rossicum, reductions in plant biomass and spread would be greatest if beetles were released on edges or in newly-established satellite populations at low plant densities. In the case of V. nigrum, beetles could be released irrespective of plant density as reproductive output and seed dispersal would be reduced similarly.  相似文献   

6.
Rhinocyllus conicus Fr?elich was introduced from Europe into North America as a biological control agent of the exotic weed Carduus nutans L. Concern exists over the feeding of this weevil on at least 25 species of native Cirsium thistles. Beginning in 2008, cage studies isolating adults of R. conicus on buds and flower heads of all eight thistle species (native and introduced) recorded from Tennessee were conducted to test if R. conicus could use these species for reproduction and what impacts larval feeding of R. conicus may have on seed production. Larvae of R. conicus completed development in heads of the native species C. carolinianum (Walter) Fernald and Schubert. and C. horridulum Michaux, and significant reductions in seed numbers of both species occurred during 2008. Rhinocyllus conicus oviposited on both C. carolinianum and C. horridulum at significantly greater levels than the introduced species C. arvense (L.) Scopoli and C. vulgare (Savi) Tenore. Infested heads of C. carolinianum contained numbers of R. conicus per centimeter of plant head width similar to Ca. nutans in 2008, and both native species contained numbers of R. conicus per centimeter of plant head width similar to C. arvense and C. vulgare in 2009. Body length was similar between R. conicus reared on native thistles and its target host Ca. nutans. This report is the first documentation of R. conicus feeding and reproducing on C. carolinianum and C. horridulum. Although R. conicus has been observed only on introduced thistles in naturally occurring populations in this region, the utilization of C. carolinianum and C. horridulum as host species in controlled conditions warrants continued monitoring of field populations and further investigation into factors that may influence nontarget feeding in the future.  相似文献   

7.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood‐boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe, stimulating interest in delineating host and non‐host tree species more clearly. When offered a choice among four species of living trees in a greenhouse, adult A. glabripennis fed more on golden‐rain tree (Koelreuteria paniculata Laxmann) and river birch (Betula nigra L.) than on London planetree (Platanus × acerifolia (Aiton) Willdenow) or callery pear (Pyrus calleryana Decaisne). Oviposition rate was highest in golden‐rain tree, but larval mortality was also high and larval growth was slowest in this tree species. Oviposition rate was lowest in callery pear, and larvae failed to survive in this tree species, whether they eclosed from eggs laid in the trees or were manually inserted into the trees. Adult beetles feeding on callery pear had a reduced longevity and females feeding only on callery pear failed to develop any eggs. The resistance of golden‐rain tree against the larvae appears to operate primarily through the physical mechanism of abundant sap flow. The resistance of callery pear against both larvae and adults appears to operate through the chemical composition of the tree, which may include compounds that are toxic or which otherwise interfere with normal growth and development of the beetle. Unlike river birch or London planetree, both golden‐rain tree and callery pear are present in the native range of A. glabripennis and may therefore have developed resistance to the beetle by virtue of exposure to attack during their evolutionary history.  相似文献   

8.
Traditionally, insects are not approved for release in North America as agents for the biological control of weeds if the larvae complete development on desirable plants in no-choice tests. This criterion excludes the use of the leaf-feeding beetle Altica carduroum Guer. since it can complete development on all Cirsium spp., including rare North American species, although in nature it is only known from the target weed Cirsium arvense. Host suitability is the result of a sequence of selection factors, and this study shows that most discrimination between thistle species is the result of host finding and egg production, and not larval developmental ability. In no-choice tests, the larvae completed development on 18 Cirsium species in five sections of the genus that were tested and on Silybum marianum, but not on other genera in the tribe Cardueae or more distantly related Asteraceae. The adult food consumption on C. arvense was two to eight times greater than on other Cirsium species, many of which, such as C. pitcheri and C. drummondii, received no feeding by over 50 of the beetles in the first 24 h. The best North American thistle for egg production was C. scariosum, but this was only 28 of that on C. arvense. The preference for C. arvense in multiple-choice tests increased with the size 2 of the arena. In the largest, an area of 6 m , 80 of the beetles and eggs were found on C. arvense and none were found on plants outside the subtribe Carduineae. Thus, as theory predicts, host discrimination between thistle species takes place at earlier stages than suitability for larval development, and this should be considered when determining the safety of candidate agents.  相似文献   

9.
During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.  相似文献   

10.
Native snakeweeds, especially Gutierrezia sarothrae (Pursh) Britton and Rusby and Gutierrezia microcephala (DC.) A. Gray, are among the most widespread and damaging weeds of rangelands in the western United States and northern Mexico. The genus long ago spread to southern South America, where further speciation occurred. We have found several species of insects in Argentina that damage other species of snakeweeds there and are possible candidates for biological control in North America. The first of these, the root-boring weevil, Heilipodus ventralis (Hustache), was tested in Argentina and then sent to the USDA-ARS Insect Quarantine Facility at Temple, Texas, for host specificity testing on North American plants. We tested H. ventralis on 40 species of the family Asteraceae, in 19 tests of five types, using 686 adults and 365 larvae. Host specificity increased from adult feeding, to ovipositional selection, to larval development. At Temple, adults fed mostly on 6 species of the closely related genera Grindelia, Gutierrezia, and Gymnosperma, but with substantial feeding on four other genera of the two preferred subtribes Solidagininae and Machaerantherinae and on Baccharis in the tribe Baccharidinae, with lesser feeding on the subtribe Asterinae, all in the tribe Astereae, and on 1 species in the tribe Anthemideae. Females oviposited primarily on the same 6 species but very little on plants outside the 2 preferred subtribes. Larvae developed only on 9 of the 29 U.S. plant species tested, 6 within the two preferred subtribes and on Brickellia and Aster in other tribes. Only 5 species of three genera appear to be potential true hosts of H. ventralis in North America, on which all stages of the life cycle, adult feeding, oviposition, and larval development, can take place; these are Gymnosperma glutinosum (Spreng.) Less., Gutierrezia grandis Blake, Gut. microcephala, Gut. sarothrae, and Grindelia lanceolata Nutt. None of these genera contain species of economic or notable ecological value; the few rare species appear to be protected by habitat isolation from attack by H. ventralis. H. ventralis, therefore, appears sufficiently host specific for field release in North America. This is the first introduced biocontrol agent to be approved for release in a continental area to control a native weed.  相似文献   

11.
Extracts from three species of the plant family Piperaceae, Piper nigrum [L.], Piper guineense [Schum & Thonn, and Piper tuberculatum [Jacq.], were tested for efficacy against insects from five orders. All three species contain isobutyl amides, plant secondary compounds that act as neurotoxins in insects. These materials are considered safe to mammals because Piper spp. were used for centuries for spice and medicinal purposes. When 24-h P. nigrum LC50 values were compared between common insect pests from eastern Canada and the northeastern United States, the most sensitive species in order of increasing lethal concentration were eastern tent caterpillar, Malacosoma americanum (F.) < European pine sawfly larvae, Neodiprion sertifer (Geoffroy) < spindle ermine moth larvae, Yponomeuta cagnagella [Hübner] < viburnum leaf beetle larvae, Pyrrhalta viburni [Paykull] < stripped cucumber beetle adults, Acalymma vittatum (F.) < Colorado potato beetle adults, Leptinotarsa decemlineata (Say) < Japanese beetle adults, Popillia japonica [Newman] < hairy chinch bug, Blissus leucopterus hirtis [Montandon]. The life stage tested was the point at which each species causes the greatest amount of damage to the host plant and the point at which most gardeners would likely choose to treat with a conventional synthetic insecticide. Greenhouse trials revealed that the pepper formulations also had a repellent activity, thus protecting plant leaves from 1) herbivory (lily leaf beetle, Lilioceris lilii [Scopoli], adults and larvae and stripped cucumber beetle adults) and 2) oviposition [European corn borer, Ostrinia nubilalis (Hübner)]. Combinations with other botanical extracts were additive at best in toxicity and repellent trials. Nontarget toxicity to beneficial invertebrates is a possibility because the P. nigrum LC50 for beneficial ladybird beetles was 0.2%. P. nigrum extracts can provide a reasonable level of control against lepidopteran and European pine sawfly larvae and also will work as a short-term repellent and feeding deterrent. It is recommended that the use of Piper extracts be restricted to small-scale spot treatments in residential areas where insect pest outbreaks have occurred.  相似文献   

12.
Abstract. 1. Female monarchs were observed in the field ovipositing on a native North American milkweek host, Asclepias humistrata L. As in a comparable Australian study on an introduced novel host ( Asclepias fruticosa L.) we found post-alighting rejection of plants with low and high cardiac glycoside concentration (CG).
2. Most oviposition took place on plants with CG in the range 200–500 μg/0.1 g dry weight. Thin-layer chromatography showed no obvious qualitative difference in cardenolide types between accepted and rejected plants, excepting an indication that rejected plants may have a higher level of more polar cardenolides.
3. In a controlled laboratory experiment comparing oviposition on a low ( A.incarnata L.) vs high ( A.curassavica L.) CG host plant species we found no relationship between CG and oviposition on the low CG species, but a negative relationship in the high CG species. This corroborates our findings on oviposition on single host species in the field.
4. We also record the first indication of a physiological cost of monarch larvae feeding on plants high in CG. There was a significant negative relationship between survival of first instar larvae and CG levels in plants. This study opens the way for further work on the association of monarch butterflies and their toxic milkweed hosts.  相似文献   

13.
L. Fornasari 《BioControl》1997,42(4):605-617
Aphthona chinchihi Chen was collected in China feeding on leafy spurge (Euphorbia esula L.). Studies were conducted on its host specificity in the laboratory, using field collected adults and their progeny.Aphthona chinchihi can effectively complement the impact of the other natural enemies of leafy spurge established from Europe in the U.S.A. and Canada. The adults feed on leaves and shoots and the larvae, which cause the main damage to the plant, feed on the hypogeous portion of the plant, seriously stressing the plant and preventing its vegetative spread. The host range ofA. chinchihi was studied with tests on adult feeding and oviposition, larval survival and host suitability, using 40 plant species or varieties distributed in 12 families. The experiments demonstrated that it has a high level of specificity. This flea beetle completed its life cycle only on leafy spurge. Also, because of its ecological valence,A. chinchihi has a very good potential as a biocontrol agent in North America.  相似文献   

14.
Pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease in North America and Japan. Dispersal stage dauer larvae are transported to new host trees on the body surface and within the tracheal system of several beetle species. Worldwide, 21 species of Cerambycidae, 1 genus of Buprestidae, and 2 species of Curculionidae are known to carry pinewood nematode dauer larvae upon emerging from nematode-infested trees. Five species of cerambycids in the genus Monochamus are known to transmit dauer larvae to new host trees, four North American species and one Japanese species. Primary transmission to healthy trees occurs through beetle feeding wounds on young branches. Secondary transmission to stressed trees or recently cut logs occurs through Monochamus oviposition sites.  相似文献   

15.
Explaining the coexistence of closely related species sharing a single resource has been a long-standing challenge in ecology. Here we report on studies comparing the aphids Aphis nerii and A. asclepiadis that feed sympatrically on the milkweed Asclepias syriaca in northeastern North America. We sought to identify tradeoffs among species' attributes that might promote coexistence, but in most instances A. nerii was superior to A. asclepiadis . Aphis nerii was 84% more fecund, fed upon 880% more phloem sap, and was affected 70% less by intraspecific competition as compared to A. asclepiadis . In interspecific competition, A. nerii reduced A. asclepiadis abundance by 77%, whereas A. asclepiadis did not affect A. nerii . In dispersal trials, 10% of winged A. nerii but only 1% of A. asclepiadis successfully moved from non-host plants to A. syriaca . We also investigated whether there were differences in aphid interactions with milkweed cardenolides. Jasmonic acid increased milkweed cardenolides by 33%, a realistic amount similar to that induced by several leaf-chewing herbivores. Nevertheless, jasmonate-induced cardenolides failed to affect aphid performance and aphid feeding had no effect on milkweed cardenolide concentration. Yet cardenolides were important for aphid resistance to predators; A. nerii sequestered 25% more cardenolides and was preyed upon 50% less than A. asclepiadis . Interactions with cardenolides thus again favored A. nerii over A. asclepiadis . Given that A. nerii and A. asclepiadis are decidedly not equivalent in their demography, competitive ability, defense and dispersal, our results strongly refute the notion that neutral processes can explain coexistence of these aphids. Based on field observations, we propose two tradeoffs – timing of milkweed colonization and relationships with ants – as putative mechanisms for the coexistence of these congeners.  相似文献   

16.
Local adaptation is central for creating and maintaining spatial variation in plant-herbivore interactions. Short-lived insect herbivores feeding on long-lived plants are likely to adapt to their local host plants, because of their short generation time, poor dispersal, and geographically varying selection due to variation in plant defences. In a reciprocal feeding trial, we investigated the impact of geographic variation in plant secondary chemistry of a long-lived plant, Vincetoxicum hirundinaria, on among-population variation in local adaptation of a specialist leaf-feeding herbivore, Abrostola asclepiadis. The occurrence and degree of local adaptation varied among populations. This variation correlated with qualitative and quantitative differences in plant chemistry among the plant populations. These findings provide insights into the mechanisms driving variation in local adaptation in this specialized plant-herbivore interaction.  相似文献   

17.
Abstract.  1. Introduced insects often incorporate native plants into their diets and might be expected to show a predilection for novel hosts that are phylogenetically related to their normal hosts. The lily leaf beetle, Lilioceris lilii (Coleoptera: Chrysomelidae), is an introduced pest of cultivated lilies. Oviposition behaviour, larval behaviour, and development of L. lilii was examined on a range of potential host plants, as well as on the normal host, Asiatic hybrid lilies Lilium sp.
2. Neonate larval feeding behaviour was quantified on 15 food plant species: 10 from the Liliales, three from the Asparagales and two eudicots. Larvae fed plants closely related to the genus Lilium were more likely to initiate feeding, less likely to abandon their food leaf, and consumed more leaf area.
3. In no-choice tests, females oviposited on the novel hosts Lilium philadelphicum , Medeola virginiana , Clintonia borealis , Streptopus amplexifolius , and Polygonatum biflorum ; however, all but L. philadelphicum received very few eggs. Non- Lilium novel hosts were not used for oviposition when presented along with Asiatic lilies in choice tests.
4. A single individual was reared to the adult stage on the novel host S. amplexifolius . Several larvae survived to the pupal stage on M. virginiana , although no adults emerged from those pupae. Larvae reared on the native wood lily L. philadelphicum performed equally well or better than on the Asiatic cultivar.
5. Our results indicate that the lily leaf beetle poses a threat to native Liliaceae. Several native Lilium species, including L. philadelphicum , are threatened or endangered in certain jurisdictions throughout their range; these species should be monitored closely for colonisation by the beetle.  相似文献   

18.
Air potato, Dioscorea bulbifera, is an invasive, herbaceous, climbing vine, which dominates invaded native vegetation in Florida. The fortuitous discovery of Lilioceris sp. near impressa defoliating D. bulbifera vines and feeding on the bulbils (aerial tubers) in the Katmandu Valley of Nepal initiated a project to assess the potential of this leaf beetle for biological control of air potato in Florida. Quarantine host specificity tests were conducted on 41 plant species in 24 families and 13 orders, with 26 species outside of the Dioscoreaceae and 15 species within the Dioscoreaceae. Adults test fed (nibbled) on 4/12 of tested Dioscorea species, but no larval feeding or development occurred on any plant other than the target, D. bulbifera. The larvae feed gregariously and quickly skeletonize offered leaves of air potato. Air potato bulbils that received any feeding damage to the primary meristematic region did not sprout. The ability of the beetle larvae and adults to feed on the bulbils is important because in Florida, the plant rarely flowers or produces fruit, so these aerial tubers are the primary means of persistence and spread. The adults can live for several months without food. This extremely specialized herbivore from part of the weed's native range appears to have great promise as a biological control of air potato.  相似文献   

19.
In order to better understand the maintenance of a fairly narrow diet breadth in monarch butterfly larvae, Danaus plexippus L. (Lepidoptera: Nymphalidae: Danainae), we measured feeding preference and survival on host and non-host plant species, and sensitivity to host and non-host plant chemicals. For the plant species tested, a hierarchy of feeding preferences was observed; only plants from the Asclepiadaceae were more or equally preferred to Asclepias curassavica, the common control. The feeding preferences among plant species within the Asclepiadaceae are similar to published mean cardenolide concentrations. However, since cardenolide data were not collected from individual plants tested, definitive conclusions regarding cardenolide concentrations and plant acceptability cannot be made. Although several non-Asclepiadaceae were eaten in small quantities, all were less preferred to A. curassavica. Additionally, these non-Asclepiadaceae do not support continued feeding, development, and survival of first and fifth-instar larvae. Preference for a host versus a non-host (A. curassavica versus Vinca rosea) increased for A. curassavica reared larvae as compared to diet-reared larvae suggesting plasticity in larval food preferences. Furthermore, host species were significantly preferred over non-host plant species in bioassays using a host plant or sucrose as a common control. Larval responses to pure chemicals were examined in order to determine if host and non-host chemicals stimulate or deter feeding in monarch larvae. We found that larvae were stimulated to feed by some ubiquitous plant chemicals, such as sucrose, inositol, and rutin. In contrast, several non-host plant chemicals deterred feeding: caffeine, apocynin, gossypol, tomatine, atropine, quercitrin, and sinigrin. Additionally the cardenolides digitoxin and ouabain, which are not in milkweed plants, were neutral in their influence on feeding. Another non-milkweed cardenolide, cymarin, significantly deterred feeding. Extracts of A. curassavica leaves were tested in bioassays to determine which components of the leaf stimulate feeding. Both an ethanol extract of whole leaves and a hexane leaf-surface extract are phagostimulatory, suggesting the involvement of both polar and non-polar plant compounds. These data suggest that the host range of D. plexippus larvae is maintained by both feeding stimulatory and deterrent chemicals in host and non-host plants.  相似文献   

20.
Nontarget feeding of Rhinocyllus conicus Fr?elich and Trichosirocalus horridus (Panzer) on native North American thistles in the genus Cirsium has been documented. Some species of these native thistles have shown greater infestation levels of R. conicus in populations that are in close proximity to the target plant species, Carduus nutans L. In 2005 a study was initiated to identify areas of potential nontarget feeding by R. conicus and T. horridus on thistle species by predicting habitats of two known introduced hosts [C. nutans and Cirsium vulgare (Savi) Tenore] and two native species [Cirsium carolinianum (Walter) Fernald and Schubert and C. discolor (Muhlenberg ex Willdenow) Sprengel] using Mahalanobis distance (D(2)). Cumulative frequency graphs showed that the D(2) models for all four plant species effectively identified site conditions that contribute to the presence of the respective species. Poisson regression showed an association between D(2) values and plant counts at field-test sites for C. nutans and C. carolinianum. However, negative binomial regression detected no association between D(2) values and plant counts for C. discolor or C. vulgare. Chi-square analysis indicated associations between both weevil species and sites where C. vulgare and Carduus nutans were found, but not between the weevil and native thistle species. Habitats of C. nutans and Cirsium carolinianum overlapped in ≈12% of the study area. Data-based habitat models may provide a powerful tool for land managers and scientists to monitor native plant populations for nontarget feeding by introduced biological control agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号