首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycopolymers for glycosaminoglycan mimic were synthesized, and the inhibitory effects of Alzheimer’s β-secretase (BACE-1) were examined. The regio-selective sulfation was conducted on N-acetyl glucosamine (GlcNAc), and the acrylamide derivatives were synthesized with the consequent sulfated GlcNAc. The glycopolymers were synthesized with acrylamide using radical initiator. The glycopolymer with sulfated GlcNAc showed the strong inhibitory effect on BACE-1, and the inhibitory effects were dependent on the sulfation positions. Especially, glycopolymers carrying 3,4,6-O-sulfo-GlcNAc showed the strong inhibitory effect. The docking simulation suggested that glycopolymers bind to the active site of BACE-1.  相似文献   

2.
Alzheimer disease (AD) is a neuronal dementia for which no treatment has been consolidated yet. Major pathologic hallmark of AD is the aggregated extracellular amyloid-β plaques in the brains of disease sufferers. Aβ-peptide is a major component of amyloid plaques and is produced from amyloid precursor protein (APP) via the proteolysis action. An aspartyl protease known as β-site amyloid precursor protein cleaving enzyme (BACE-1) is responsible for this proteolytic action. Distinctive role of BACE-1 in AD pathogenesis has made it a validated target to develop anti-Alzheimer agents. Our structure-based virtual screening method led to the synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridine BACE-1 inhibitors (6a6p; in vitro hits). Molecular docking and DFT-based ab initio studies using B3LYP functional in association with triple-ζ basis set (TZV) proposed binding mode and binding energies of ligands in the active site of the receptor. In vitro BACE-1 inhibitory activities were determined by enzymatic fluorescence resonance energy transfer (FRET) assay. Most of the synthesized dihydropyridine scaffolds were active against BACE-1 while 6d, 6k, 6n and 6a were found to be the most potent molecules with IC50 values of 4.21, 4.27, 4.66 and 6.78 μM, respectively. Superior BACE-1 inhibitory activities were observed for dihydropyridine derivatives containing fused/nonfused thiazole containing groups, possibly attributing to the additional interactions with S2–S3 subpocket residues. Relatively reliable correlation between calculated binding energies and experimental BACE-1 inhibitory activities was achieved (R2 = 0.51). Moreover, compounds 6d, 6k, 6n and 6a exhibited relatively no calcium channel blocking activity with regard to nifedipine suggesting them as appropriate candidates for further modification(s) to BACE-1 inhibitory scaffolds.  相似文献   

3.
We describe synthesis and evaluation of a series of cyclic urea derivatives with hydroxylethylamine isostere. Modification of P3, P1, and P2′ and combination of SAR display a >100-fold increase in potency with good cellular activity (IC50 = 0.15 μM) relative to the previously reported compound 3.  相似文献   

4.
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer’s disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD.  相似文献   

5.
The deposition of beta-amyloid peptides (A beta42 and A beta40) in neuritic plaques is one of the hallmarks of Alzheimer's disease (AD). A beta peptides are derived from sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. BACE-1 has been shown to be the major beta-secretase and is a primary therapeutic target for AD. In this article, two novel assays for the characterization of BACE-1 inhibitors are reported. The first is a sensitive 96-well HPLC biochemical assay that uses a unique substrate containing an optimized peptide cleavage sequence, NFEV, spanning from the P2-P2' positions This substrate was processed by BACE-1 approximately 10 times more efficiently than was the widely used substrate containing the Swedish (NLDA) sequence. As a result, the concentration of the enzyme required for the assay can be as low as 100 pM, permitting the evaluation of inhibitors with subnanomolar potency. The assay has also been applied to related aspartyl proteases such as cathepsin D (Cat D) and BACE-2. The second assay is a homogeneous electrochemiluminescence assay for the evaluation of BACE-1 inhibition in cultured cells that assesses the level of secreted amyloid EV40_NF from HEK293T cells stably transfected with APP containing the novel NFEV sequence. To illustrate the use of these assays, the properties of a potent, cell-active BACE-1 inhibitor are described.  相似文献   

6.
New amino-1,4-oxazine derived BACE-1 inhibitors were explored and various synthetic routes developed. The binding mode of the inhibitors was elucidated by co-crystallization of 4 with BACE-1 and X-ray analysis. Subsequent optimization led to inhibitors with low double digit nanomolar activity in a biochemical and single digit nanomolar potency in a cellular assays. To assess the inhibitors for their permeation properties and potential to cross the blood-brain-barrier a MDR1-MDCK cell model was successfully applied. Compound 8a confirmed the in vitro results by dose-dependently reducing Aβ levels in mice in an acute treatment regimen.  相似文献   

7.
gamma-Secretase cleavage of the amyloid precursor protein already subjected to a prior beta-secretase cleavage generates beta-amyloid (Abeta) peptide fragments, which are major constituents of the amyloid plagues found in Alzheimer's disease brain tissues. gamma-Secretase activity and components of the gamma-secretase complex are found in the endoplasmic reticulum-Golgi intermediate compartment, the Golgi, the trans-Golgi network, the plasma membrane, the endosomal-lysosomal system and recently, the mitochondria. Abeta fragments have been shown to be neurotoxic, leading to mitochondrial dysfunction and enhanced apoptotic cell death. However, if Abeta fragments are indeed detrimental to neurons, the widespread presence of enzymatic activity that would result in their generation in the cell appears to make little sense. The presence of a gamma-secretase complex in the mitochondrion, an organelle that is particularly susceptible to Abeta toxicity, is even more puzzling. Emerging evidence suggests that both secreted and intracellular Abeta fragments have endogenous functions. Also, while the fibrillogenic Abeta1-42 is clearly neurotoxic, the more abundant and soluble Abeta1-40 is an antioxidant and could potentially be neuroprotective in several ways. A "physiological" amount of Abeta1-40 production by cellular gamma-secretase activity may be part of the neuron's natural counter against oxidative damage, in addition to endogenous roles in neuronal survival and modulation of synaptic transmission. In any case, whether Abeta is produced locally in the mitochondria and the function for mitochondrial Abeta, if produced, is yet unclear.  相似文献   

8.
We describe the design, synthesis, X-ray studies, and biological evaluation of novel BACE1 inhibitors containing bicyclic isoxazoline carboxamides as the P3 ligand in combination with methyl cysteine, methylsulfonylalanine and Boc-amino alanine as P2 ligands. Inhibitor 3a displayed a BACE1 Ki value of 10.9?nM and EC50 of 343?nM. The X-ray structure of 3a bound to the active site of BACE1 was determined at 2.85?Å resolution. The structure revealed that the major molecular interactions between BACE1 and the bicyclic tetrahydrofuranyl isoxazoline heterocycle are van der Waals in nature.  相似文献   

9.
The identification of a series of sulfonyl-amino-acetamides as BACE-1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease is reported. The derivatives were designed based on the docking simulation study, synthesized and assessed for BACE-1 inhibition in vitro. The designed ligands revealed desired binding interactions with the catalytic aspartate dyad and occupance of S1 and S2′ active site regions. These in silico results correlated well with in vitro activity. Out of 33 compounds synthesized, 12 compounds showed significant inhibition at 10 μM concentration. The most active compound 2.17S had IC50 of 7.90 μM against BACE-1, which was concomitant with results of in silico docking study.  相似文献   

10.
Alzheimer’s is a neurodegenerative disorder resulting in memory loss and decline in cognitive abilities. Accumulation of extracellular beta amyloidal plaques is one of the major pathology associated with this disease. β-Secretase or BACE-1 performs the initial and rate limiting step of amyloidic pathway in which 37–43 amino acid long peptides are generated which aggregate to form plaques. Inhibition of this enzyme offers a viable prospect to check the growth of these plaques. Numerous efforts have been made in recent years for the generation of BACE-1 inhibitors but many of them failed during the preclinical or clinical trials due to drug related or drug induced toxicity. In the present work, we have used computational methods to screen a large dataset of natural compounds to search for small molecules having BACE-1 inhibitory activity with low toxicity to normal cells. Molecular dynamics simulations were performed to analyze molecular interactions between the screened compounds and the active residues of the enzyme. Herein, we report two natural compounds of inhibitory nature active against β-secretase enzyme of amyloidic pathway and are potent lead molecules against Alzheimer’s disease.  相似文献   

11.
The structure activity relationship of the prime region of conformationally restricted hydroxyethylamine (HEA) BACE inhibitors is described. Variation of the P1′ region provided selectivity over Cat-D with a series of 2,2-dioxo-isothiochromanes and optimization of the P2′ substituent of chromane–HEA(s) with polar substituents provided improvements in the compound’s in vitro permeability. Significant potency gains were observed with small aliphatic substituents such as methyl, n-propyl, and cyclopropyl when placed at the C-2 position of the chromane.  相似文献   

12.
The regulation of α-, β-, (BACE-1), and γ-secretase activities to alter β-amyloid (Aβ) generation is considered to be one of the most promising disease-modifying therapeutics for Alzheimer’s disease. In this study, the effect and mechanisms of bis(7)-tacrine (a promising anti-Alzheimer’s dimer) on Aβ generation were investigated. Bis(7)-tacrine (0.1-3 μM) substantially reduced the amounts of both secreted and intracellular Aβ in Neuro2a APPswe cells without altering the expression of APP. sAPPα and CTFα increased, while sAPPβ and CTFβ decreased significantly in Neuro2a APPswe cells following the treatment with bis(7)-tacrine, indicating that bis(7)-tacrine might activate α-secretase and/or inhibit BACE-1 activity. Furthermore, bis(7)-tacrine concentration-dependently inhibited BACE-1 activity in cultured cells, and also in recombinant human BACE-1 in a non-competitive manner with an IC50 of 7.5 μM, but did not directly affect activities of BACE-2, Cathepsin D, α- or γ-secretase. Taken together, our results not only suggest that bis(7)-tacrine may reduce the biosynthesis of Aβ mainly by directly inhibiting BACE-1 activity, but also provide new insights into the rational design of novel anti-Alzheimer’s dimers that might have disease-modifying properties.  相似文献   

13.
14.
Two types of P1-P3-linked macrocyclic renin inhibitors containing the hydroxyethylene isostere (HE) scaffold just outside the macrocyclic ring have been synthesized. An aromatic or aliphatic substituent (P3sp) was introduced in the macrocyclic ring aiming at the S3 subpocket (S3sp) in order to optimize the potency. A 5-6-fold improvement in both the Ki and the human plasma renin activity (HPRA)IC50 was observed when moving from the starting linear peptidomimetic compound 1 to the most potent macrocycle 42 (Ki = 3.3 nM and HPRA IC50 = 7 nM). Truncation of the prime side of 42 led to 8-10-fold loss of inhibitory activity in macrocycle 43 (Ki = 34 nM and HPRA IC50 = 56 nM). All macrocycles were epimeric mixtures in regard to the P3sp substituent and X-ray crystallographic data of the representative renin macrocycle 43 complex showed that only the S-isomer buried the substituent into the S3sp. Inhibitory selectivity over cathepsin D (Cat-D) and BACE-1 was also investigated for all the macrocycles and showed that truncation of the prime side increased selectivity of inhibition in favor of renin.  相似文献   

15.
We report the design and synthesis of a series of BACE1 inhibitors incorporating mono- and bicyclic 6-substituted 2-oxopiperazines as novel P1′ and P2′ ligands and isophthalamide derivative as P2-P3 ligands. Among mono-substituted 2-oxopiperazines, inhibitor 5a with N-benzyl-2-oxopiperazine and isophthalamide showed potent BACE1 inhibitory activity (Ki = 2 nM). Inhibitor 5g, with N-benzyl-2-oxopiperazine and substituted indole-derived P2-ligand showed a reduction in potency. The X-ray crystal structure of 5g-bound BACE1 was determined and used to design a set of disubstituted 2-oxopiperazines and bicyclic derivatives that were subsequently investigated. Inhibitor 6j with an oxazolidinone derivative showed a BACE1 inhibitory activity of 23 nM and cellular EC50 of 80 nM.  相似文献   

16.
We report the synthesis and the β-site amyloid precursor protein cleaving enzyme-1 inhibitory properties of novel phenyl(thio)ureas bearing 2-(thio)oxothiazoline derivatives. A library of analogues was prepared according to specific synthetic schemes and the inhibitory activity was monitored using a fluorescence resonance energy transfer assay. Several analogues show potent inhibitory activities ranging between 1 and 0.01 µM and the activity is related to the NH acidity of the (thio)urea motif. Our results illustrate once again the close relationship between molecular recognition, complexation of the active site in enzymatic system, and organocatalysis utilizing explicit hydrogen bonding.  相似文献   

17.
BACE-1 and GSK-3β both are potential therapeutic drug targets for Alzheimer’s disease. Recently, both these targets received attention for designing dual inhibitors. Till now only two scaffolds (triazinone and curcumin) derivatives have been reported as BACE-1 and GSK-3β dual inhibitors. In our previous work, we have reported first in class dual inhibitor for BACE-1 and GSK-3β. In this study, we have explored other naphthofuran derivatives for their potential to inhibit BACE-1 and GSK-3β through docking, molecular dynamics, binding energy (MM-PBSA). These computational methods were performed to estimate the binding affinity of naphthofuran derivatives towards the BACE-1 and GSK-3β. In the docking results, two derivatives (NS7 and NS9) showed better binding affinity as compared to previously reported inhibitors. Hydrogen bond occupancy of NS7 and NS9 generated from MD trajectories showed good interaction with the flap residues Gln73, Thr72 of BACE-1 and Arg141, Thr138 residues of GSK-3β. MM-PBSA and energy decomposition per residue revealed different components of binding energy and relative importance of amino acid involved in binding. The results showed that the binding of inhibitors was majorly governed by the hydrophobic interactions and suggesting that hydrophobic interactions might be the key to design dual inhibitors for BACE1-1 and GSK-3β. Distance between important pair of amino acid residues indicated that BACE-1 and GSK-3β adopt closed conformation and become inactive after ligand binding. The results suggested that naphthofuran derivatives might act as dual inhibitor against BACE-1 and GSK-3β.  相似文献   

18.
Generation and accumulation of the amyloid β peptide (Aβ) following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 (Beta-site APP Cleaving Enzyme-1, β-secretase) and γ-secretase is a main causal factor of Alzheimer's disease (AD). Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Aβ, is an attractive therapeutic approach for the treatment of AD. In this study, we discovered that natural flavonoids act as non-peptidic BACE-1 inhibitors and potently inhibit BACE-1 activity and reduce the level of secreted Aβ in primary cortical neurons. In addition, we demonstrated the calculated docking poses of flavonoids to BACE-1 and revealed the interactions of flavonoids with the BACE-1 catalytic center. We firstly revealed novel pharmacophore features of flavonoids by using cell-free, cell-based and in silico docking studies. These results contribute to the development of new BACE-1 inhibitors for the treatment of AD.  相似文献   

19.
This Letter describes the de novo design of non-peptidic hydroxyethylamine (HEA) inhibitors of BACE-1 by elimination of P-gp contributing amide attachments. The predicted binding mode of the novel cyclic sulfone HEA core template was confirmed in a X-ray co-crystal structure. Inhibitors of sub-micromolar potency with an improved property profile over historic HEA inhibitors resulting in improved brain penetration are described.  相似文献   

20.
A set of low molecular weight compounds containing a hydroxyethylamine (HEA) core structure with different prime side alkyl substituted 4,5,6,7-tetrahydrobenzazoles and one 4,5,6,7-tetrahydropyridinoazole was synthesized. Striking differences were observed on potencies in the BACE-1 enzymatic and cellular assays depending on the nature of the heteroatoms in the bicyclic ring, from the low active compound 4 to inhibitor 6, displaying BACE-1 IC50 values of 44 nM (enzyme assay) and 65 nM (cell-based assay).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号