首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical soda apple (Solanum viarum Dunal (Solanaceae) is a South American invasive plant of rangelands, pastures and natural areas in Florida. A chrysomelid beetle from South America, Gratiana boliviana Spaeth, has been released at >300 locations in Florida for biological control of tropical soda apple since 2003. Tropical soda apple is a host of several plant viruses, including the newly described tropical soda apple mosaic virus (TSAMV). We investigated the influence of TSAMV infection of tropical soda apple plants on developmental time, leaf tissue consumption, longevity, fecundity, and feeding preference of G. boliviana, and also tested transmission of the virus by the beetle. Developmental time was approximately 10% slower, and adults consumed only about 50% as much leaf tissue, for beetles fed on infected plants compared to uninfected plants. Longevity did not differ between females reared on infected and uninfected plants, but females fed on uninfected plants produced 71% more eggs than those fed on infected plants. Adult G. boliviana preferentially fed on uninfected plants when given a choice. There was no evidence of TSAMV transmission by G. boliviana. The potential impacts of TSAMV infection on the effectiveness of G. boliviana as a biological control agent are discussed.  相似文献   

2.
Increasing evidence suggests that individuals of the same plant species occurring in different microhabitats often show a degree of phenotypic and phytochemical variation. Consequently, insect herbivores associated with such plant species must deal with environment‐mediated changes or variability in the traits of their host plants. In this study, we examined the effects of habitat condition (shaded vs. full‐sun habitats) on plant traits and leaf characteristics of the invasive alien plant, Chromolaena odorata (L.) King & Robinson (Asteraceae). In addition, the performance was evaluated in two generations of a specialist folivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae), on leaves obtained from both shaded and full‐sun habitats. The study was done in an area where the insect was introduced as a biological control agent. Leaves growing in shade were less tough, had higher water and nitrogen content, and lower total non‐structural carbohydrate, compared with leaves growing in full sun. Plants growing in shade had longer leaves and were taller, but above‐ground biomass was significantly reduced compared with plants growing in full sun. In both generations (parents and offspring), P. insulata developed faster and had larger pupal mass, increased growth rate, and higher fecundity when reared on shaded foliage compared with full‐sun foliage. Although immature survival and adult longevity did not differ between habitats, Maw's host suitability index indicated that shaded leaves were more suitable for the growth and reproduction of P. insulata. We suggest that the benefits obtained by P. insulata feeding on shaded foliage are associated with reduced toughness and enhanced nitrogen and water content of leaves. These results demonstrate that light‐mediated changes in plant traits and leaf characteristics can affect insect folivore performance.  相似文献   

3.
Plant shading is commonly recognised as a factor, which increases susceptibility of plants to attack by herbivorous insects. In this study we experimentally investigated the effect of host plant shading on two willow-feeding leaf beetles, Galerucella lineola feeding upon Salix phylicifolia and Phratora vitellinae feeding upon Salix myrsinifolia . Both beetle species were more abundant on potted willows growing in open habitats than on the same clones placed under the shade of trees. However, in the laboratory the food preference by adults and larval performance showed that the shaded willows are actually better food for both beetle species. On the contrary, when larvae were reared in the field under natural abiotic conditions, we found no difference in larval performance, or if any, even better performance in open habitats. Apparently, higher and more variable daily temperatures in open habitats accelerated the growth of the larvae. When adults were let to emigrate from or immigrate to potted willows, which had been grown in the same conditions but placed either in the open or shady habitats, adults preferred exposed willows. Invertebrate predators were more abundant in open habitats, but we found no differences in leaf beetle mortality by natural enemies between the habitats. Although the larval performance appeared to be approximately equal in the two habitats during the unusually warm study period, we suggest that under suboptimal temperatures the better abiotic conditions of open sites can easily override the better food provided by shaded habitats. The selection of abiotic habitat thus plays a significant role in the adaptive habitat and host plant selection of these beetles within the gradient of shadiness.  相似文献   

4.
Differential herbivory in contrasting environments is commonly explained by differences in plant traits. When several plant traits are considered, separate correlation analyses between herbivory and candidate traits are typically conducted. This makes it difficult to discern which trait best explain the herbivory patterns, or to avoid spurious inferences due to correlated characters. Aristotelia chilensis saplings sustain greater herbivory in shaded environments than in open habitats. We measured alkaloids, phenolics, trichomes, leaf thickness and water content in the same plants sampled for herbivory. We conducted a multiple regression analysis to estimate the relationship between herbivory and each plant trait accounting for the effect of correlated traits, thus identifying which trait(s) better explain(s) the differential herbivory on A. chilensis. We also estimated insect abundance in both light environments. Palatability bioassays tested whether leaf consumption by the main herbivore on A. chilensis was consistent with field herbivory patterns. Overall insect abundance was similar in open and shaded environments. While saplings in open environments had thicker leaves, lower leaf water content, and higher concentration of alkaloids and phenolics, no difference in trichome density was detected. The multiple regression analysis showed that leaf thickness was the only trait significantly associated with herbivory. Thicker leaves received less damage by herbivores. Sawfly larvae consumed more leaf tissue when fed on shade leaves. This result is consistent with field herbivory and, together with results of insect abundance, renders unlikely that the differential herbivory in A. chilensis was due to greater herbivory pressure in open habitats.  相似文献   

5.
The amount of light available for photosynthesis is a key environmental factor that shapes the form and function of plants. Several plant traits affect the manner in which different species fix carbon during vegetative growth. Under the hypothesis that grasses respond to environmental selective pressures, we analyzed the differences in certain leaf, culm, and regenerative traits of 283 native Uruguayan grasses growing in open (grassland) and shaded (forest) habitats. In order to differentiate the phylogenetic effects from the adaptive changes to current local conditions, we used phylogenetically controlled comparative analysis. We found that the divergence of grass species between grasslands and forests was accompanied by changes in leaf traits. Narrow and filiform blades (higher length/width ratio) were favored in species growing in grasslands, while wider and oval blades were favored in species growing in forests. The response of the leaf blades in forests was probably directed towards maximizing light interception, while in grasslands could be linked to the loss of water and heat. In contrast, we found that neither the culm nor the caryopsis length exhibited significant evolutionary changes associated with open or shaded habitats. Our results highlight the functional significance and adaptive value of the width and shape of the grass blades to the current environment.  相似文献   

6.
Rising atmospheric CO2 levels could have drastic effects on the performance of invasive weeds and their insect herbivores. Despite the importance of biological control as an effective management tool for environmental weeds, there have been few studies on the potential impact of climate change on the future efficacy of biological control. The objective of the present study was to evaluate the effect of elevated CO2 on the performance of tropical soda apple Solanum viarum (Solanaceae) and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae). We established three levels of CO2 in environmental growth chambers: ambient (400 ppm), medium (580 ppm) and high (780 ppm). Plants growing at the high level had greater biomass compared to those growing at the ambient and medium levels of CO2. Leaf water content and the amount of leaf nitrogen were reduced at high compared to ambient or medium CO2 levels. G. boliviana immature survival and developmental time were negatively affected at high CO2 but not at medium or ambient levels. Adults were lighter and smaller when reared at the high CO2 level compared to ambient and medium treatments, while adult fecundity was higher at the medium CO2 level. Leaf area consumed by fifth instars was lower when feeding on plants grown at the high CO2 level either inside a Petri dish or on potted plants. These results suggest that beetle performance may be diminished under future climate. However, further studies should incorporate other factors such as temperature and precipitation as well as the evolutionary potential of herbivores and plants to adapt to a changing climate.  相似文献   

7.
In tropical forests, light‐gaps created from treefalls are a frequent source of habitat heterogeneity. The increase in productivity, through gap formation, can alter food quality, predation and their impact on insect herbivores. We hypothesized that in gaps, herbivores would be less resource‐limited and more predator limited, whereas in the understory, we predicted the reverse. In this study, we investigate the combined effects of food quality and predation on the lepidopteran larva Zunacetha annulata feeding on its host plant Hybanthus prunifolius in two habitats; sunny treefall gaps and the shaded understory in Panama. In bioassays, Z. annulata feeding on sun leaves ate 22 percent less leaf area, grew 25 percent faster, and had higher pupal weights than larvae feeding on shade leaves. However, shade leaves had higher nitrogen content and specific leaf area. In gaps, predation was 26.4 percent compared to 13.8 percent in the understory. Larvae on understory plants traveled greater distances and spent more time searching and traveling than larvae on gap plants. These differences in behavior are consistent with lower predation risk and lower quality food in the understory. Using data from bioassays and field experiments we calculated 0.22 percent and 1.02 percent survival to adulthood for larvae in gaps and the understory, respectively. In conclusion, although these habitats were in close proximity, we found that larvae in the understory are more resource‐limited and larvae in gaps are more predator limited.  相似文献   

8.
Dwarf bamboos are an important understory component of the lowland and montane forests in the subtropical regions of Asia and South America, yet little is known about their physiology and phenotypic plasticity in response to changing light environments. To understand how bamboo species adapt to different light intensities, we examined leaf morphological, anatomical, and physiological differentiation of Sinarundinaria nitida (Mitford) Nakai, a subtropical woody dwarf bamboo, growing in open and shaded natural habitats in the Ailao Mountains, SW China. Compared with leaves in open areas, leaves in shaded areas had higher values in leaf size, specific leaf area, leaf nitrogen, and chlorophyll concentrations per unit area but lower values in leaf thickness, vein density, stomatal density, leaf carbon concentration, and total soluble sugar concentration. However, stomatal size and leaf phosphorus concentration per unit mass remained relatively constant regardless of light regime. Leaves in the open habitat exhibited a higher light-saturated net photosynthetic rate, dark respiration rate, non-photochemical quenching, and electron transport rate than those in the shaded habitat. The results of this study revealed that the bamboo species exhibited a high plasticity of its leaf structural and functional traits in response to different irradiances. The combination of high plasticity in leaf morphological, anatomical, and physiological traits allows this bamboo species to grow in heterogeneous habitats.  相似文献   

9.
1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies. This approach was applied to a leaf mining moth feeding on apple leaf tissues. 2. Canopy geometry was explicitly considered by mapping the 3D position and orientation of more than 26 000 leaves in an apple tree. Four published models for canopy radiation interception, energy budget of leaves and mines, body temperature and developmental rate of the leaf miner were integrated. Model predictions were compared with actual microclimate temperatures. The biophysical model accurately predicted temperature within mines at different positions within the tree crown. 3. Field temperature measurements indicated that leaf and mine temperature patterns differ according to the regional climatic conditions (cloudy or sunny) and depending on their location within the canopy. Mines in the sun can be warmer than those in the shade by several degrees and the heterogeneity of mine temperature was incremented by 120%, compared with that of leaf temperature. 4. The integrated model was used to explore the impact of both warm and exceptionally hot climatic conditions recorded during a heat wave on the microclimate heterogeneity at canopy scale. During warm conditions, larvae in sunlight-exposed mines experienced nearly optimal growth conditions compared with those within shaded mines. The developmental rate was increased by almost 50% in the sunny microhabitat compared with the shaded location. Larvae, however, experienced optimal temperatures for their development inside shaded mines during extreme climatic conditions, whereas larvae in exposed mines were overheating, leading to major risks of mortality. 5. Tree canopies act as both magnifiers and reducers of the climatic regime experienced in open air outside canopies. Favourable and risky spots within the canopy do change as a function of the climatic conditions at the regional scale. The shifting nature of the mosaic of suitable and risky habitats may explain the observed uniform distribution of leaf miners within tree canopies.  相似文献   

10.
The effect of herbivory by Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) on the invasive, tropical soda apple (TSA) (Solanum viarum Dunal, Solanaceae), was investigated using exclusion methods and by monitoring the density of G. boliviana and the weed at four locations over a period of 40 months. TSA plants protected by insecticide were taller, wider, and had greater canopy cover that unprotected plants, and plants in closed cages were taller and wider than those in open cages. Survival of plants was higher in plots protected with insecticide than in unprotected plots in both years of a 2-year study. In the population dynamics study, the initial density of TSA was 4–5 times higher at one of the locations than at the other three sites, but within 3 years, TSA density at the high density site had declined by 90%. At the three sites which initially had a low abundance of TSA, density remained low throughout the study. The intrinsic rate of increase of G. boliviana varied between –3.9 and 4.5, but over the 3-year study, was not different from zero, indicating a stable population. The intrinsic rate of increase was lower than zero for the period from October to January, and greater than zero during the January to April period. In the periods from April to July and July to October, the rate of increase was not different from zero. The implications of these results for biological control of TSA in Florida are discussed.  相似文献   

11.
Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17‐fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.  相似文献   

12.
Summary Kudzu occurs in a variety of habitats in the southeastern United States. It is most common in exposed, forest edge sites and road cuts where it forms an extensive ground canopy as well as a canopy overtopping nearby trees, but it can also be found in completely open fields and deeply shaded sites within a forest. Microclimate, stomatal conductance, leaf water potential and photosynthetic responses to light, temperature and humidity were measured in two contrasting microhabitats on Pueraria lobata, kudzu. Midsummer leaf temperatures and leaf-to-air water vapor deficits for plants growing in an exposed site were significantly greater than for those in a shaded site, exceeding 35° C and 50 mmol mol-1, respectively. Maximum stomatal conductance exceeded 400 mmol m-2 s-1 in exposed leaves during peak vegetative growth. Stomatal conductance in shaded leaves was approximately half the value measured in exposed leaves on any particular dya. Maximum photosynthetic carbon uptake was also higher in leaves growing in exposed sites compared to leaves in shaded sites, exceeding 18.7 and 14.0 mol m-2 s-1, respectively. Photosynthesis, stomatal conductance and intercellular CO2 concentration decreased dramatically in response to increasing water vapor deficit for leaves from both sites. However, transpiration showed an initial increase at intermediate water vapor deficits, leveling off or even decreasing at higher values. Leaf water potential demonstrated marked diurnal variation, but remained constant over a wide range of transpirational water fluxes. This latter feature, combined with microenvironmental modification through rapid leaf orientation and pronounced stomatal responses to water vapor deficits may represent important adaptive responses in the exploitation of a diverse array of habitats by kudzu.  相似文献   

13.
Increasing evidence suggests that the responses of insect herbivores to environment-mediated changes in the phenotypic and phytochemical traits of their host plants are more complex than previously thought. Here, we examined the effects of habitat conditions (shaded versus full-sun habitats) on plant traits and leaf characteristics of the invasive alien plant, Chromolaena odorata (L.) (Asteraceae). We also determined neonate larval preference of the specialist herbivore, Pareuchaetes pseudoinsulata Rego Barros (Lepidoptera: Erebidae) (a biological control agent) for shaded versus full-sun leaves. The study further evaluated the performance of the moth on C. odorata leaves obtained from both shaded and full-sun habitats. Leaves of C. odorata plants growing in the shaded habitat had higher water and nitrogen contents compared with full-sun leaves. Plants growing in shade had longer leaves but full-sun plants were taller and had greater aboveground biomass compared with shaded plants. Although neonate larvae of P. pseudoinsulata preferred to feed on full-sun foliage, development was faster when reared on shaded foliage. However, survival, pupal mass, growth rate, and Maw’s host suitability index of the moth did not significantly differ between full-sun and shaded foliage. Our inability to demonstrate significant differences in key insect performance metrics in P. pseudoinsulata between shaded and full-sun foliage, despite neonate larval preference for one of the foliage types, suggests that neither of the foliage types can be considered a superior host, and reiterate the fact that relationships between host plant quality (modulated by light intensity) and phytophagous insect performance are not simple.  相似文献   

14.
We evaluated the temporal and spatial patterns of abundance and the amount of damage caused by gall‐inducing insects (GII) in deciduous and riparian habitats in a seasonal tropical dry forest in Mexico. Plants occurring in these habitats differ in their phenology and moisture availability. Deciduous habitats are seasonal and xeric, while riparian habitats are aseasonal and mesic. We found 37 GII species and each one was associated with a specific plant species. In total, 19 species (51.3%) were present in deciduous habitats, 13 species (35.2%) in riparian habitats, and only 5 species (13.5%) occurred in both. Abundance and leaf damage by GII were greater in deciduous than in riparian habitats during the wet season. For each GII species that occurred in both habitats, host plant species supported greater abundance and leaf damage by GII in deciduous habitats during the wet season. These results indicate a greater association of GII species with host plants in deciduous than in riparian habitats during the wet season. In riparian habitats, 11 plant species (61.1%) had greater density of GII in the dry than in the wet season. Similarly, leaf damage by GII was significantly greater in the dry than in the wet season in riparian habitats for 12 plant species (66.7%). Dry forest plants of riparian habitats presented two peaks of leaf‐flushing: GII colonized leaves produced in the first peak at the beginning of the wet season, and accumulated or recolonized leaves in the second peak at the beginning of the dry season. The levels of leaf damage by GII detected in this study in the rainy season were considerably higher than those obtained for folivorous insects in other neotropical forests, suggesting that this GII guild might have an important impact on their host plant species in this tropical community.  相似文献   

15.
Seasonal variation in heat shock proteins Hsp70 and Hsp90 expression was studied in the leaves of two naturally growing Iris pumila populations, one inhabiting an open dune site, and the other the understorey of a Pinus silvestris stand. The Hsps were quantified by an immunoblotting procedure. The level of the Hsps was found to vary significantly both across seasons and between habitats. The mean Hsp70 concentration was significantly greater at the open area than in the woodland understorey, reaching its maximum in the summer, especially in plants experiencing full sunlight. Two Hsp90 isoforms, referred to as Hsp90a (86 kDa) and Hsp90b (84 kDa), were detected. At both habitats, the level of Hsp90a was highest in autumn, that of Hsp90b in spring, whereas both of them reached a nadir in summer. Throughout the growing season, the relative abundance of Hsp90b was higher in plants growing under vegetation canopy in comparison to those inhabiting the open dune site. An inverse relationship between the phenotypic variation in specific leaf area and the level of Hsp90b over seasons at both habitats was observed, suggesting the role of this protein in buffering phenotypic variation in the wild.  相似文献   

16.
野生五唇兰根部内生真菌多样性研究   总被引:14,自引:0,他引:14  
兰科植物根部的内生真菌在兰科植物的整个生活史中起着重要的作用, 为了解不同生境不同类型的兰科植物内生真菌菌群的多样性, 作者于2004年7月至2005年10月, 以海南岛霸王岭自然保护区内的野生五唇兰(Doritis pulcherrima)作为实验材料, 对不同生境、不同形态的五唇兰植株根部的内生真菌群落多样性进行了研究。从附生于石上及生于杂木林或灌丛中、叶背绿色及叶背紫红色的五唇兰植株新鲜营养根段中共分离出83株内生真菌, 鉴定为19个属, 其中包括培养基筛选实验中分离出的30株14属。镰刀菌属(Fusarium)(24.1%)和丝核菌属 (Rhizocto-nia)(14.5%)为优势属。两种叶色的五唇兰内生真菌群落丰富度较为一致; 而两种不同生境中的五唇兰内生真菌群落丰富度则表现出较大的差异: 附生于灌木的五唇兰内生真菌群落Shannon多样性指数远高于附生岩石的。研究结果表明五唇兰内生真菌多样性更多地受生境的影响而不是受植株形态类型的影响。  相似文献   

17.
Leaf orientations and light environments were recorded for 40 juvenile Pseudopanax crassifolius trees growing in New Zealand in a partially shaded, secondary forest environment. Efficiencies of interception of diffuse and direct light by the observed leaf arrangments were calculated relative to those of three hypothetical leaf arrangements. Canopy gaps above the study plants were unevenly distributed with respect to azimuth and elevation above the horizon. Our results indicate that photosynthetically active radiation (PAR) received from the sides is more important than that received from directly above. In 33 of the plants leaf orientation was found to be significantly clustered towards one azimuth. The mean azimuth and the mean angle of declination were different for each plant. Leaves were steeply declined, and oriented towards the largest canopy gap at each site. Steep leaf angles reduced interception of direct and diffuse PAR when compared to interception by plant with a hypothetical horizontal leaf arrangement. When compared to a hypothetical arrangement with steep leaf declination and a uniform azimuth distribution, the observed leaf arrangement increased the efficiency of interception of diffuse PAR, but had a variable effect on the interception of direct PAR. Results indicate that the developing leaves of juvenile P. crassifolius orient towards the strongest sources of diffuse light, regardless of their value as a source of direct light. By maximising diffuse light interception while reducing direct light interception, leaf orientation may be a partial determinant of the types of habitats exploited by this species. This study emphasises the importance of considering diffuse light interception for plants growing in partially shaded environments.  相似文献   

18.
Cherry (Prunus avium L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increased the dry mass of each of the plant components studied. Consequently, the total dry mass of shaded plants was significantly greater than that of controls at the end of the growing season. However, the diurnal trend in the level of photosynthesis (per unit of leaf area) of shaded plants was similar to the controls in August, but lower in September. As the growing season proceeded, reduced photosynthetic rates, thinner mesophyll and larger specific leaf area in the shaded plants indicated that leaf development had adapted to shaded conditions throughout the growing season. It is suggested that increased growth of shaded plants was caused by a higher initial relative growth rate and a greater whole-plant photosynthesis. Shading consistently reduced transpiration over the season, therefore improving water use efficiency of shaded leaves. Our results suggest that a moderate reduction in light intensity can be a useful method for improving growth and saving water in hot and dry environments.  相似文献   

19.
Background and Aims Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost–benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests.Methods We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost–benefit analysis for the two fern groups.Key Results The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC.Conclusions Our results demonstrate that leaf cost–benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests.  相似文献   

20.
Herbivorous insects are influenced by both 'bottom-up' forces mediated through host plants and 'top-down' forces from natural enemies. Few studies have tried to evaluate the relative importance of the two forces in determining the abundance of insects. The leaf beetle Phratora vulgatissima Linnaeus sometimes occurs at high densities and severely damages the willow Salix cinerea in forest habitats. For willows growing in open agricultural landscapes (farmland S. cinerea), the leaf beetle generally occurs at low densities and plants receive little damage. The purpose of the present study was to evaluate the relative importance of host plant quality and natural enemies behind the observed difference in P. vulgatissima abundance. Female egg-laying and larval performance (growth and survival) were studied on caged willow branches in the field to investigate if plant quality differs between S. cinerea trees growing in forest and farmland habitats. The survival of eggs exposed to natural enemies was examined to see if predation could explain the low abundance of leaf beetles on farmland willows. The results indicated no difference in plant quality; female egg laying and larval performance did not differ between the forest and the farmland. However, heteropteran predators (true bugs) were more abundant, and the survival of eggs was lower, on plants in the farmland habitat than in the forest habitat. The data suggest that the low abundance of P. vulgatissima on farmland willows could not be explained by a poor quality of plants, but more likely by high predation from heteropterans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号