首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovarian ischemia is a gynecological emergency case that occurs as a result of ovarian torsion. Oxidative stress plays a central role in the development of ischemia/reperfusion (IR) injuries. Lycopene (LYC) is a lipophilic, natural carotenoid well known for its antioxidant properties. This study provides information on the potential applications of lycopene. The Wistar Albino rats were distributed into six groups: Sham group (only a laparotomy was performed), Control group [laparotomy and intraperitoneal dissolvent (olive oil)], IR group, IR+olive oil group, IR+LYC 2.5 mg/kg/dose, intraperitoneal group, IR+LYC 5 mg/kg/dose intraperitoneal group. Evaluated in terms of histopathological changes, tissue malondialdehyde levels (MDA), ovarian expressions of phosphorylated nuclear factor-kappa B (p-NF-κB) and the TUNEL method was utilized to show apoptosis of ovarian tissue. There was a significant decrease in MDA, p-NF-κB values and the proportion of apoptotic cells assessed by TUNEL compared to the group that did not receive intraperitoneal LYC in rat injury with IR damage (P<0.05). In histopathological damage scoring, it was observed that the cell damage was significantly reduced in LYC-administered groups. LYC showed significant ameliorative effects on ovary injury caused by IR through acting as an antioxidant, antiinflammatory, and antiapoptotic agent.  相似文献   

2.
ABSTRACT

We investigated how resveratrol affects lipid oxidation during experimental renal ischemia-reperfusion injury in rats. We used 48 adult male rats assigned to five groups: group 1, control; group 2, renal ischemia; group 3, renal ischemia + reperfusion; group 4, resveratrol + renal ischemia; group 5, resveratrol + renal ischemia + reperfusion. Plasma and renal tissue malondialdehyde (MDA), and erythrocyte and renal tissue glutathione (GSH) levels were measured and histologic changes in the renal tissue were examined. Ischemia-reperfusion affected the MDA-GSH balance adversely and caused histopathological changes in the renal tissue of the ischemia and ischemia + reperfusion groups. Resveratrol treatment normalized MDA and GSH levels as well as the histopathology that occurred in the renal tissue of the ischemia and ischemia + reperfusion groups.  相似文献   

3.
The objective of this study was to assess the biochemical and histological signs of pancreatic damage development and pancreatic recovery in the course of ischemia-reperfusion induced pancreatitis. Acute pancreatitis was induced in rats by limitation of pancreatic blood flow (PBF) in inferior splenic artery for 30 min using microvascular clips, followed by reperfusion. Rats were sacrificed at the time: 1 h, 12 h, 24 h, and 2, 3, 5, 7, 10, 14, 21 and 28 days after ischemia. PBF was measured using laser Doppler flowmeter. Plasma amylase, interleukin 1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, as well as, morphological features of pancreatic damage were examined. Ischemia with reperfusion caused acute necrotizing pancreatitis followed by pancreatic regeneration. After removal of microvascular clips, PBF was reduced and the maximal fall of PBF was observed 24 h after ischemia, then PBF grew reaching the control value at 28th day. Plasma amylase activity was increased between 12th h and 3rd day with maximum at 24 h after ischemia. Also plasma IL-1beta and IL-10 were elevated with maximal value at the first and second day after ischemia, respectively. DNA synthesis was maximally reduced at the first day (by 70%) and from second day the reversion of this tendency was observed with full restoration of pancreatic DNA synthesis within four weeks. Morphological features of pancreatic tissue showed necrosis, strongly pronounced edema and leukocyte infiltration. Maximal intensity of morphological signs of pancreatic damage was observed between first and second day of reperfusion. During pancreatic regeneration between second and tenth day after ischemia the temporary appearance of chronic pancreatitis-like features such as fibrosis, acinar cell loss, formation of tubular complexes and dilatation of ducts was observed. The regeneration was completed within four weeks after pancreatitis development. We conclude that partial and temporary pancreatic ischemia followed by reperfusion causes acute necrotizing pancreatitis with subsequent regeneration within four weeks. Pancreatic repair after necrotizing pancreatitis is connected with the increase in plasma IL-10 concentration and transitory formation of tubular complexes.  相似文献   

4.
目的:探讨脑缺血和缺血/再灌注不同时间大鼠大脑皮层神经元自噬的变化。方法:健康雄性SD大鼠60只,随机分为:假手术(Sham)组(n=10),脑缺血和缺血/再灌注模型组(n=50).模型组分别在缺血30min、2h,缺血2h再灌注1h、6h、24h五个时间点,随机抽取10只大鼠,测定脑梗死体积和脑含水量,同时采用Western印迹法测定各组大鼠大脑皮层中微管相关蛋白轻链3-Ⅱ(LC3-Ⅱ)的水平,透射电镜检测大脑皮层神经细胞自噬情况。结果:脑缺血30min时LC3-Ⅱ/Ⅰ比值未见明显上升,缺血2h时LC3-Ⅱ/Ⅰ比值开始升高,明显高于Sham组(P<0.01);缺血/再灌注1h、6h时LC3-Ⅱ/Ⅰ比值虽较缺血2h组有所下降,但仍明显高于Sham组(P<0.05);缺血/再灌注24h时LC3Ⅱ/Ⅰ比值达高峰,明显高于Sham组(P<0.01)。透射电镜观察进一步证实该现象。缺血/再灌注6h和24h时大鼠脑梗死体积明显增加,与Sham组比较有统计学差异(P<0.01)。缺血/再灌注24h大鼠脑组织含水量明显增加,明显高于Sham组(P<0.05)。HE染色显示:仅在缺血/再灌注24h组大鼠皮层见组织水肿、疏松,部分细胞变性、凋亡,海马区见大量神经元细胞核皱缩、深染呈变性凋亡状。结论:局灶性脑缺血和缺血/再灌注模型中大脑皮层缺血2 h神经元自噬即明显激活,缺血/再灌注1 h、6 h自噬均持续增高,缺血/再灌注24 h自噬达高峰。  相似文献   

5.
目的:研究脑缺血/再灌注(I/R)损伤后瘦素受体(OB-R)表达的变化情况.方法:雄性成年Wistar大鼠20只,随机分成4组:假手术24 h、72 h对照组及I/R 24 h、72 h实验组.线栓法制备大鼠局灶性脑皮质I/R损伤模型,在脑I/R后相应时间点分别处死大鼠,采用免疫组织化学、免疫电镜方法观察大脑皮质OB-R的表达,在光镜及电镜下观察神经元损伤改变.结果:左顶叶皮质锥体细胞、血管内皮、脉络丛发现有OB-R阳性表达;与假手术对照组相比,I/R 24 h(I/R早期)锥体细胞OB-R免疫反应阳性细胞表达减少(P<0.05),I/R 72 h(I/R晚期)锥体细胞OB-R免疫反应阳性细胞减少更明显(P<0.001);光镜及电镜对缺血中心区神经元的观察均显示I/R晚期的神经元损伤明显重于早期.结论:脑I/R损伤后早期神经元损害和迟发性神经元损害均伴随有OB-R的表达减少,且迟发性神经元损害表达减少更明显,因此在脑梗塞的防治中有必要对瘦素及其OB-R的作用进一步研究.  相似文献   

6.
The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.  相似文献   

7.
ObjectiveTo study the protective effect of total flavonoid in rabdosia rubescens on BIT model by brain ischemic tolerance (hereinafter BIT) model of mice.MethodBIT model is used to block bilateral common carotid arteries and to copy BIT model of mice. After 10 min of transient ischemia for rats in preconditioning group, the mice in the nimodipine group and naoluotong capsule group were given the total flavonoid in rabdosia rubescens (300 mg/kg, 150 mg/kg, 75 mg/kg) for gavage, sham operation group, ischemia/reperfusion injury (hereinafter IRI) group and BIT group were fed with the same volume of 0.5% sodium carboxymethyl cellulose (CMC) once a day for 5 days. After administration for 1 h on day 5 (120 h), the rats in the other groups except for the sham operation group were treated with blood flow block for 30 min and reperfusion for 22 h. The serum NSE level were measured and the brain NO content and NOS activity changes was measured to observe the histopathological changes of brain tissue.ResultsBIT models of mice and in rats were both successfully replicated. The total flavonoid in rabdosia rubescens can decrease the mortality of mice, decrease serum NSE level, increase the content of NO and the activity of NOS in the brain tissue of mice, and improve the pathological damage of cortex and hippocampus of mice.ConclusionThe total flavonoid in rabdosia rubescens can stimulate an endogenous protective mechanism by inducing the release of low levels of cytokines NO and NOS, which reduces the release of serum NSE, relieves the brain tissue ischemia-reperfusion injury, and further improves the protection effect of ischemic preconditioning on brain injury. The damage of brain tissue ischemia and reperfusion, and further improve the ischemia Protective effect of preconditioning on brain injury.  相似文献   

8.
Apoptosis is a form of programmed cell death that plays an important role in small intestine ischemia-reperfusion (IR) injury. The aim of this study was to determine the total proportion of apoptotic cell death (apoptotic index) following injury induced by ischemia and during various subsequent reperfusion periods, total histopathological status and the intestine regeneration dynamics after the IR injury. Experimental animals, Wistar rats (n = 45) were divided into three experimental and one control groups. In the experimental groups 1 h ischemia was followed by 1, 4 and 24 h reperfusion. Intestinal ischemia was induced by superior mesenteric artery (SMA) occlusion. Segments of jejunum were stained with hematoxylin and eosin and studied immunohistochemically using M30 CytoDEATH and in situ TUNEL methods for apoptosis detection. Our experimental data showed that: (i) apoptosis is an important form of cell death in the small intestine after IR injury induced by SMA occlusion; (ii) maximum levels of histopathological damage and apoptotic index of mucosa occurred after 1 h ischemia and 1 h of reperfusion; and (iii) mucosa possesses great regeneration ability. The lowest levels of histopathological damage and apoptotic index were observed in the group with 1 h ischemia and 24 h reperfusion where, however, the highest mitotic index was present.  相似文献   

9.
为了观察脑缺血再灌注(cerebral ischemia reperfusion, CIR)大鼠缺血灶周边脑组织不同时间点神经血管单元(neurovascular unit, NVU)超微结构变化,研究三七总皂苷(Panax notoginseng saponins, PNS)对脑缺血再灌注大鼠脑组织NVU超微结构的影响,本研究采用改良Zea Longa法制作局灶性大脑中动脉闭塞(MCAO)模型,缺血2 h后再灌注;采用Longa法评分标准检测各组大鼠术后4 h神经功能评分,随之各组进行干预,分别在缺血再灌注后24 h、72 h、7 d、3周进行神经功能评分和透射电镜下观察各组大鼠缺血灶周边脑组织的NVU超微结构变化。研究结果表明,干预前即术后4 h治疗组和对照组神经功能评分比较无明显差异;PNS干预后治疗组大鼠神经功能评分逐渐改善,缺血再灌注后24 h与对照组比较,差异无统计学意义(p>0.05),再灌注72 h、7 d、3周的大鼠神经缺损评分与同时间点对照组相比差异具有统计学意义(p<0.05)。电镜观察发现再灌注24 h、72 h、7 d、3周治疗组大鼠脑组织NVU超微结构的病理形态损伤均较同时间点对照组明显减轻。本研究结论认为,PNS通过整合促进脑缺血后NVU的神经元、胶质细胞和微血管的修复,改善神经功能缺损症状,对脑缺血具有保护作用。  相似文献   

10.
The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.  相似文献   

11.
BACKGROUND: The aim of this study was to analyze the effects of 45min of hepatic ischemia and 1h of reperfusion on renal oxidative stress parameters, on renal tissue damage, and the role of Desferrioxamin (Dfx) and Q on these parameters. METHODS: Thirty Wistar albino rats were randomized to five groups. Group I was the control group. Group II received no treatment. Groups III and IV received intramuscular injections of desferrioxamine (100mg/kg) and quercetin (50mg/kg), respectively. Group V was administered Dfx and quercetin in combination. After treatment for 3 days, groups II, III, IV, and V were exposed to total hepatic ischemia for 45min. Plasma alanine aminotransferase levels, renal malondialdehyde and reduced glutathione (GSH) activities were measured after reperfusion for 1h. Histopathological and ultrastructural analysis of renal tissues was carried out. RESULTS: Plasma creatinine and BUN levels were markedly increased in the IR group and pretreated groups. Kidney MDA increased in the IR group, Q and Dfx+Q significantly decreased kidney MDA Kidney GSH levels markedly decreased in the IR group, Dfx significantly increased kidney GSH. No evidence of overt injury was observed in any renal tissue under light and electron microscopy. CONCLUSIONS: Our data demonstrated that 45min of hepatic ischemia and 1h of reperfusion may alter renal functions and may cause oxidative stress on renal tissue. Q and Dfx seem to have a beneficial effect via the GSH system and modulation of MDA levels.  相似文献   

12.
AIM: Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Male Wistar albino rats (250-300 g) were unilaterally nephrectomized, and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. RESULTS: The results revealed that I/R injury increased (p<0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to I/R injury were attenuated by OT treatment (p<0.05-0.001). CONCLUSIONS: Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage.  相似文献   

13.
目的:通过大蒜素预处理,观察全脑缺血再灌注大鼠海马区ICAM-1 的表达,从而探讨大蒜素的脑保护机制。方法:雄性 Wistar 大鼠30 只,随机分为5 组:假手术组、缺血再灌注组、缺血再灌注+ 大蒜素10、20、30 mg/kg 组。采用四血管闭塞法制备大 鼠全脑缺血再灌注模型,于再灌注24 h 取出海马,硫堇染色观察海马组织的形态学改变,免疫组织化学染色测定海马CA1 区 ICAM-1 免疫反应阳性细胞面积和积分光密度值。结果:通过给予大鼠全脑缺血8 min 再灌注24 h处理,海马CA1 区组织形态学 改变显著,神经元密度明显降低;ICAM-1的表达显著增加。静脉给予大蒜素可使缺血再灌注海马组织形态学改变明显改善,存活 神经元数目增加,ICAM-1 表达显著较少。结论:大蒜素可以通过减少ICAM-1 的表达抑制全脑缺血再灌注后的炎症损失从而发 挥脑保护作用。  相似文献   

14.
目的: 探讨细胞自噬在大鼠缺血/再灌注肺损伤中的作用。方法: 随机将40只SD大鼠分为5组(n=8),分别为 ① 假手术组(Sham组):只开胸3.5 h;② 缺血/再灌注组(I/R组):开胸夹闭肺门缺血0.5 h后再灌注3 h;③ 溶剂组(DMSO组):术前1 h腹腔注射DMSO溶液;④自噬激动剂组(Rap组):术前腹腔注射雷帕霉素溶液;⑤自噬抑制剂组(3-MA组):术前1 h腹腔注射3-MA溶液;后三组的其余操作同I/R组。实验结束后处死大鼠,取肺组织,记录并计算肺组织湿/干重比(W/D)、总肺含水量变化(TLW) ,光镜和电镜观察肺组织及细胞形态,计算肺泡损伤率(IAR),Western blot检测自噬相关蛋白的表达情况。结果: 相对于sham组,其余四组肺W/D、TLW、IAR均明显升高,自噬相关蛋白表达明显上升,p-AMPK、Beclin 1、LC3 II 蛋白明显增多,p-mTOR、p62蛋白明显减少(P<0.05或P<0.01),光镜下其余各组肺组织有不同程度的水肿渗出,肺泡结构紊乱,电镜下细胞超微结构损伤加重,部分可见自噬小体;与DMSO组相比,3-MA组肺W/D、TLW、IAR明显下降(P<0.05或P<0.01),自噬相关蛋白表达明显下降,肺间质水肿较轻,细胞渗出较少,细胞超微结构损伤减轻,未见自噬小体。而I/R、DMSO、Rap组的各项指标变化无统计学差异(P>0.05)。结论: 肺缺血/再灌注可诱发细胞自噬增强,从而引起大鼠肺损伤。  相似文献   

15.
Renal ischemia and reperfusion injury is the major cause of acute renal failure and may also be involved in the development and progression of some forms of chronic kidney disease. The aim of this study was to evaluate whether doxycycline, a member of the tetracycline family of antibiotics, protects kidney tissue or not. 36 Sprague-Dawley rats (200–250 g) were used. The animals were divided into three groups: control, ischemia/reperfusion and ischemia/reperfusion+doxycycline group. Rats were subjected to renal ischemia by clamping the left pedicle for 1 h, and then reperfused for 1 h. The ischemia/reperfusion+doxycycline group were pretreated intraperitoneally with doxycycline suspension (10 mg/kg) 2 h before the induction of ischemia. Our results indicate that malondialdehyde, matrix-metalloproteinase-2, interleukin-2, interleukin-6, interleukin-10, interleukin 1-beta and tumor necrosis factor-alpha levels were significantly higher in the ischemia/reperfusion group than those in the control group. Doxycycline administration significantly decreased these parameters. Tissue inhibitor of metalloproteinases-1 levels also increased after ischemia/reperfusion and decreased with doxycycline pretreatment, but these changes were not significantly different. Glutathione levels significantly decreased after ischemia/reperfusion injury when compared with the control group and doxycycline pretreatment significantly increased glutathione levels when compared with the ischemia/reperfusion group. Apoptotic cells and p53 positive cells were significantly decreased in doxycycline treated group. These results suggest that doxycycline reduces renal oxidative injury and facilitates repair. Doxycycline may play a role in a renoprotective therapeutic regimen.  相似文献   

16.
目的:探究丙泊酚对全肝缺血再灌注(THIR)大鼠脑损伤的保护作用及机制。方法:选取72只健康成年雄性SD大鼠,将其按照抽签法分成假手术组、对照组以及丙泊酚组。所有大鼠予以12h禁食处理,采用3%戊巴比妥钠行腹腔注射麻醉处理,常规消毒后取上腹部正中切口进入腹腔。假手术组仅暴露肝门,不予以阻断处理。对照组与丙泊酚组则以无创动脉夹阻断肝固有动脉、门静脉和胆总管,在右肾动脉水平处阻断肝下下腔静脉,膈肌水平阻断肝上下腔静脉,进入全肝缺血阶段,阻断30 min后去除动脉夹恢复肝血流。其中丙泊酚组在全肝缺血前10 min予以丙泊酚50 mg/kg腹腔注射干预,假手术组与对照组则予以等量的生理盐水腹腔注射干预。比较三组大鼠再灌注24h后的脑组织细胞凋亡率、特异性半胱氨酸蛋白酶-3(Caspase-3)蛋白表达水平,脑组织超氧化物歧化酶(SOD)、丙二醛(MDA)、一氧化氮(NO)水平,血清白介素-6(IL-6)以及肿瘤坏死因子-α(TNF-α)水平。结果:对照组与丙泊酚组大鼠的细胞凋亡率及Caspase-3相对表达量均高于假手术组,而丙泊酚组细胞凋亡率及Caspase-3相对表达量均低于对照组(均P<0.05)。对照组与丙泊酚组大鼠脑组织SOD水平均低于假手术组,而丙泊酚组脑组织SOD水平高于对照组;对照组与丙泊酚组大鼠脑组织MDA、NO水平均高于假手术组,而丙泊酚组脑组织MDA、NO水平低于对照组(均P<0.05)。对照组与丙泊酚组大鼠血清IL-6、TNF-α水平均高于假手术组,而丙泊酚组血清IL-6、TNF-α水平均低于对照组(均P<0.05)。结论:丙泊酚可有效抑制THIR大鼠脑损伤引起的细胞凋亡,其主要机制可能与抑制Caspase-3表达、炎症反应以及抗自由基损伤有关。  相似文献   

17.
目的: 探讨肺缺血/再灌注(LI/R)时肝脏损伤的影响,并初步探索细胞自噬(Autophagy)在其中发挥的作用。方法: 构建大鼠缺血/再灌注肺损伤(LI/RI)模型,模型制备方法为大鼠麻醉后切开气管进行机械通气,使用动脉夹将肺门夹闭模拟缺血过程,30 min后松开动脉夹,恢复灌注3 h。24只大鼠随机分为伪手术组(Sham组)、缺血/再灌注组(I/R组)、溶剂组(DMSO组)和自噬抑制剂组(3-MA组),每组均6只,后2组大鼠术前分别腹腔注射DMSO和3-MA,造模结束后使用肺湿/干重比判断造模是否成功;抽取静脉血测定肝脏转氨酶指标ALT与AST;取肝脏组织,光镜下观察肝脏形态改变,以及电镜下观察肝细胞超微结构;使用RT-qPCR和Western blot实验分别检测肝脏组织细胞中自噬相关蛋白的基因mRNA表达水平和蛋白表达水平。结果: 与Sham组相比,其余各组肺湿/干重比均升高;血AST和ALT均有大幅升高且肝脏组织损伤明显,其中以I/R组升高最为明显,光镜下组织形态学及电镜下细胞微细结构均有不同程度的破坏;肝脏中自噬相关蛋白的基因表达水平与蛋白表达水平均有明显不同,表现为自噬上升 (P<0.01或P<0.05)。I/R组和DMSO组肝脏组织均有较重损伤,肝细胞结构破坏严重,自噬小体形成,而AST、ALT、自噬相关蛋白转录和表达水平等各项指标均无统计学差异(P>0.05)。而相较于DMSO组,3-MA组肝脏组织损伤有所减轻,肝细胞微细结构损伤程度低,且无自噬小体形成,血中AST和ALT下降,肝脏组织内自噬水平均下降 (P<0.05)。结论: 肺缺血/再灌注可引起大鼠肝损伤;细胞自噬可介导大鼠肺缺血/再灌注引起的肝损伤,抑制细胞自噬可以有效减轻大鼠LI/R引起的肝损伤。  相似文献   

18.

Objective

Explore the possible protective effect of Sargentodoxa cuneata total phenolic acids on cerebral ischemia reperfusion injury rats.

Methods

Focal cerebral ischemia reperfusion rats model were established by linear thrombus. Nimodipine group, Naoluotong group, the high, middle and low dose of Sargentodoxa cuneata total phenolic acids groups were given related drugs via intragastric administration before operation for seven days, once a day. At the same time sham operation group, and ischemia reperfusion group were given the same volume of physiological saline. One hour after the last administration, establish focal cerebral ischemia- reperfusion model in rats by thread method, and the thread was taken out after 2?h ischemia to achieve cerebral ischemia reperfusion injury in rats. After reperfusion for 24?h, the rats were given neurologic deficit score. The brain tissue was taken to measure the levels of IL-6, IL-1β, TNF-α, Bcl-2, Bax, Casp-3 and ICAM-1; HE staining observed histopathological changes in the hippocampus and cortical areas of the brain; Immunohistochemistry was used to observe the expression of NGF and NF-KBp65.

Result

Focal cerebral ischemia reperfusion rats model was copyed successed. Compared with model group, each dose group of Sargentodoxa cuneata total phenolic acids could decreased the neurologic deficit score (P?<?0.05 or P?<?0.01), decreased the levels of IL-6, IL-1β, ICAM-1, TNF-α, Bax and Caspase-3 in brain tissue (P?<?0.05 or P?<?0.01), increased the levels of IL-10, Bcl-2, NGF in brain tissue (P?<?0.05 or P?<?0.01), decreased the express of NF-KBp65 in brain (P?<?0.05 or P?<?0.01).

Conclusion

Sargentodoxa cuneata total phenolic acids can improve focal cerebral ischemia reperfusion injury rats tissue inflammation, apoptosis pathway, increase nutrition factor to protect the neurons, reduce the apoptosis of nerve cells, activate brain cells self-protect, improve the histopathological changes in the hippocampus and cortical areas of the brain, reduce cerebral ischemia reperfusion injury.  相似文献   

19.

The mitochondrial damage has a pivotal role in triggering apoptosis and cell death. This study assessed the effect of silibinin on optical atrophy-1 (OPA1) and mitofusin-1 (MFN1) gene expression in liver tissue during hepatic warm ischemia–reperfusion (IR). Four groups of rats, eight rats each were designed: Vehicle: the rats received normal saline and encountered to laparotomy, Sili: silibinin (60 mg/kg) was administered to animals, IR: the rats received the normal saline and insulted by liver IR procedure, and IR?+?Sili: silibinin was injected to rats. All groups were subjected to the same process of injection of the solvent or silibinin (30 min before laparotomy or ischemia and immediately after the reperfusion), intraperitoneally (IP). After 3 h of reperfusion, blood and liver tissue samples were collected for future examinations. Our results showed no significant differences between the Vehicle and Sili groups in all assessed parameters. In IR?+?Sili, the increased serum levels of AST and ALT in comparison with the control group were markedly reduced by silibinin treatment. Silibinin lowered the elevated expression of OPA1 and MFN1 mRNAs in the IR group. Histology revealed silibinin could decline tissue degeneration compared to the IR group. Electron microscopy of control and silibinin groups showed no fusion of mitochondria and tissue degradation both of which were observed in the IR group. The extent of tissue destruction and mitochondrial fusion decreased significantly with silibinin treatment. Silibinin has a protective effect on liver cells against IR induced injuries by preserving mitochondrial membrane.

  相似文献   

20.
The study was designed to investigate the effect of progesterone and its gender based variation on myocardial ischemia/reperfusion (I/R) injury in rats. Adult Sprague Dawley rats were divided into vehicle treated reperfusion injury group male (I/R-M), female (I/R-F), ovariectomised (I/R-OVR) and progesterone treatment (I/R-M+PG, I/R-F+PG, I/R-OVR+PG) groups, respectively. I/R injury was produced by occluding the left descending coronary artery (LCA) for 1 h and followed by re-opening for 1 h. Progesterone (2 mg kg(-1) i.p.) was administered 30 min after induction of ischemia. Hemodynamic parameters (+/-dp/dt, MAP), heart rate, ST-segment elevation and occurrence of ventricular tachycardia (VT) were measured during the I/R period. The myocardial infarct area, oxidative stress markers, activities of myeloperoxidase (MPO) and creatine kinase (CK) were determined after the experiment along with the assessment of the effect on apoptotic activity by using DNA fragmentation analysis. Histological observations were carried out on heart tissue. Treatment with progesterone significantly (P<0.05) reduced infarct area, lipid peroxidation (LPO) level and activity of MPO in females (I/R-F+PG) as compared to ischemic females (I/R-F). Progesterone significantly (P<0.001, P<0.05) inhibited serum CK activity and incidences of VT in female rats. Superoxide dismutase (SOD) activity, reduced glutathione (GSH) levels were significantly elevated (P<0.05) in I/R-F+PG group. Internucleosomal DNA fragmentation was less in I/R-F+PG group when compared to I/R-F group. The ischemic male and ovariectomised (I/R-M and I/R-OVR) counterparts did not show any significant change after progesterone treatment. In conclusion, the cardioprotective effect of progesterone on myocardial I/R injury induced damage is based on gender of the animal. The protective effect could be mediated by attenuation of inflammation and its possible interaction with endogenous estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号