首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flag leaf angle impacts the photosynthetic capacity of densely grown plants and is thus an important agronomic breeding trait for crop architecture and yield. The hormone auxin plays a key role in regulating this trait, yet the underlying molecular and cellular mechanisms remain unclear. Here, we report that two rice (Oryza sativa) auxin response factors (ARFs), OsARF6 and OsARF17, which are highly expressed in lamina joint tissues, control flag leaf angle in response to auxin. Loss-of-function double osarf6 osarf17 mutants displayed reduced secondary cell wall levels of lamina joint sclerenchymatous cells (Scs), resulting in an exaggerated flag leaf angle and decreased grain yield under dense planting conditions. Mechanical measurements indicated that the mutant lamina joint tissues were too weak to support the weight of the flag leaf blade, resembling the phenotype of the rice increased leaf angle1 (ila1) mutant. We demonstrate that OsARF6 and OsARF17 directly bind to the ILA1 promoter independently and synergistically to activate its expression. In addition, auxin-induced ILA1 expression was dependent on OsARF6 and OsARF17. Collectively, our study reveals a mechanism that integrates auxin signaling with the secondary cell wall composition to determine flag leaf angle, providing breeding targets in rice, and potentially other cereals, for this key trait.

Two auxin response genes influence the secondary cell wall biosynthesis and the strength of lamina joints, thereby contributing to the adjustment of flag leaf angles.  相似文献   

2.
Phytohormones signaling and crosstalk regulating leaf angle in rice   总被引:2,自引:0,他引:2  
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.  相似文献   

3.
Mitogen-activated protein kinase kinase kinase (MAPKKK) are the first components of MAPK cascades, which play pivotal roles in signaling during plant development and physiological processes. The genome of rice encodes 75 MAPKKKs, of which 43 are Raf-like MAPKKKs. The functions and action modes of most of the Raf-like MAPKKKs, whether they function as bona fide MAPKKKs and which are their downstream MAPKKs, are largely unknown. Here, we identified the osmapkkk43 mutant, which conferred broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the destructive bacterial pathogen of rice. Oryza sativa (Os)MAPKKK43 encoding a Raf-like MAPKKK was previously known as Increased Leaf Angle 1 (OsILA1). Genetic analysis indicated that OsILA1 functioned as a negative regulator and acted upstream of the OsMAPKK4–OsMAPK6 cascade in rice–Xoo interactions. Unlike classical MAPKKKs, OsILA1 mainly phosphorylated the threonine 34 site at the N-terminal domain of OsMAPKK4, which possibly influenced the stability of OsMAPKK4. The N-terminal domain of OsILA1 is required for its homodimer formation and its full phosphorylation capacity. Taken together, our findings reveal that OsILA1 acts as a negative regulator of the OsMAPKK4–OsMAPK6 cascade and is involved in rice–Xoo interactions.  相似文献   

4.
The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize.  相似文献   

5.
6.
The Spc1 mitogen-activated protein kinase (MAPK) cascade in fission yeast is activated by two MAPK kinase kinase (MAPKKK) paralogues, Wis4 and Win1, in response to multiple forms of environmental stress. Previous studies identified Mcs4, a “response regulator” protein that associates with the MAPKKKs and receives peroxide stress signals by phosphorelay from the Mak2/Mak3 sensor histidine kinases. Here we show that Mcs4 has an unexpected, phosphorelay-independent function in promoting heteromer association between the Wis4 and Win1 MAPKKKs. Only one of the MAPKKKs in the heteromer complex needs to be catalytically active, but disturbing the integrity of the complex by mutations to Mcs4, Wis4, or Win1 results in reduced MAPKKK–MAPKK interaction and, consequently, compromised MAPK activation. The physical interaction among Mcs4, Wis4, and Win1 is constitutive and not responsive to stress stimuli. Therefore the Mcs4–MAPKKK heteromer complex might serve as a stable platform/scaffold for signaling proteins that convey input and output of different stress signals. The Wis4–Win1 complex discovered in fission yeast demonstrates that heteromer-mediated mechanisms are not limited to mammalian MAPKKKs.  相似文献   

7.
To determine the role of leaf mechanical properties in altering foliar inclination angles, and the nutrient and carbon costs of specific foliar angle variation patterns along the canopy, leaf structural and biomechanical characteristics, biomass partitioning into support, and foliar nitrogen and carbon concentrations were studied in the temperate deciduous species Liriodendron tulipifera L., which possesses large leaves on long petioles. We used beam theory to model leaf lamina as a uniform load, and estimated both the lamina and petiole flexural stiffness, which characterizes the resistance to bending of foliar elements at a common load and length. Petiole and lamina vertical inclination angles with respect to horizontal increased with increasing average daily integrated photon flux density (Qint). Yet, the light effects on lamina inclination angle were primary determined by the petiole inclination angle. Although the petioles and laminas became longer, and the lamina loads increased with increasing Qint, the flexural stiffness of both lamina and petiole increased to compensate for this, such that the lamina vertical displacement was only weakly related to Qint. In addition, increases and decreases in the petiole inclination angle with respect to the horizontal effectively reduced the distance of lamina load from the axis of rotation, thereby reducing the bending moments and lamina inclination due to gravity. We demonstrate that large investments, up to 30% of total leaf biomass, in petiole and large veins are necessary to maintain the lamina at a specific position, but also that light has no direct effect on the fractional biomass investment in support. However, we provide evidence that apart from light availability, structural and chemical characteristics of the foliage may also be affected by water stress, magnitude of which scales positively with Qint.  相似文献   

8.
9.
10.
In common with other eukaryotes, plants utilize mitogen-activated protein kinase (MAPK) cascades to mediate responses to a wide variety of stimuli. In contrast to other eukaryotes, plants have an unusually large number of MAPK components, such as more than 20 MAPKs, 10 MAPK kinases (MAPKKs), and 60 MAPKK kinases (MAPKKKs) in Arabidopsis (MAPK Group (2002) Trends Plant Sci. 7, 301-308). Presently it is mostly unknown how MAPK signaling specificity is generated in plants. Here we have isolated OMTK1 (oxidative stress-activated MAP triple-kinase 1), a novel MAPKKK from alfalfa (Medicago sativa). In plant protoplasts, OMTK1 showed basal kinase activity and was found to induce cell death. Among a panel of hormones and stresses tested, only H(2)O(2) was found to activate OMTK1. Out of four MAPKs, OMTK1 specifically activated MMK3 resulting in an increased cell death rate. Pull-down analysis between recombinant proteins indicated that OMTK1 directly interacts with MMK3 and that OMTK1 and MMK3 are part of a protein complex in vivo. These results indicate that OMTK1 plays a MAPK scaffolding role and functions in activation of H(2)O(2) -induced cell death in plants.  相似文献   

11.
12.
Clay NK  Nelson T 《The Plant cell》2002,14(11):2707-2722
The formation of the venation pattern in leaves is ideal for examining signaling pathways that recognize and respond to spatial and temporal information, because the pattern is two-dimensional and heritable and the resulting veins influence the three-dimensional spatial organization of the surrounding differentiating leaf cell types. We identified a provascular/procambial cell-specific gene that encodes a Leu-rich repeat receptor kinase, which we named VASCULAR HIGHWAY1 (VH1). A change in the expression domain and level of VH1 marks the transition from an uncommitted provascular state to a committed procambial state in early vascular development. The coding sequence, expression pattern, and transgenic phenotypes together suggest that VH1 transduces extracellular spatial and temporal signals into downstream cell differentiation responses in provascular/procambial cells.  相似文献   

13.
Ethylene hormone responses are negatively regulated by the CTR1 protein, which has similarity to mitogen-activated protein kinase kinase kinases (MAPKKKs). Because of this similarity, it has long been speculated that ethylene signal transduction involves a MAPK cascade. Now, a recent paper provides compelling evidence for an ethylene-activated MAPK pathway. The implication is that CTR1 and the newly identified MAPKK and MAPKs comprise a MAPK module that regulates ethylene responses in plants.  相似文献   

14.
ABSTRACT: BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily ancient mechanism of signal transduction found in eukaryotic cells. In plants, MAPK cascades are associated with responses to various abiotic and biotic stresses such as plant pathogens. MAPK cascades function through sequential phosphorylation: MAPK kinase kinases (MAPKKKs) phosphorylate MAPK kinases (MAPKKs), and phosphorylated MAPKKs phosphorylate MAPKs. Of these three types of kinase, the MAPKKKs exhibit the most divergence in the plant genome. Their great diversity is assumed to allow MAPKKKs to regulate many specific signaling pathways in plants despite the relatively limited number of MAPKKs and MAPKs. Although some plant MAPKKKs, including the MAPKKKalpha of Nicotiana benthamiana (NbMAPKKKalpha), are known to play crucial roles in plant defense responses, the functional relationship among MAPKKK genes is poorly understood. Here, we performed a comparative functional analysis of MAPKKKs to investigate the signaling pathway leading to the defense response. RESULTS: We cloned three novel MAPKKK genes from N. benthamiana: NbMAPKKKbeta, NbMAPKKKgamma, and NbMAPKKKepsilon2. Transient overexpression of full-length NbMAPKKKbeta or NbMAPKKKgamma or their kinase domains in N. benthamiana leaves induced hypersensitive response (HR)-like cell death associated with hydrogen peroxide production. This activity was dependent on the kinase activity of the overexpressed MAPKKK. In addition, virus-induced silencing of NbMAPKKKbeta or NbMAPKKKgamma expression significantly suppressed the induction of programmed cell death (PCD) by viral infection. Furthermore, in epistasis analysis of the functional relationships among NbMAPKKKbeta, NbMAPKKKgamma, and NbMAPKKKalpha (previously shown to be involved in plant defense responses) conducted by combining transient overexpression analysis and virus-induced gene silencing, silencing of NbMAPKKKalpha suppressed cell death induced by the overexpression of the NbMAPKKKbeta kinase domain or of NbMAPKKKgamma, but silencing of NbMAPKKKbeta failed to suppress cell death induced by the overexpression of NbMAPKKKalpha or NbMAPKKKgamma. Silencing of NbMAPKKKgamma suppressed cell death induced by the NbMAPKKKbeta kinase domain but not that induced by NbMAPKKKalpha. CONCLUSIONS: These results demonstrate that in addition to NbMAPKKKalpha, NbMAPKKKbeta and NbMAPKKKgamma also function as positive regulators of PCD. Furthermore, these three MAPKKKs form a linear signaling pathway leading to PCD; this pathway proceeds from NbMAPKKKbeta to NbMAPKKKgamma to NbMAPKKKalpha.  相似文献   

15.
TAK1, a member of the mitogen-activated kinase kinase kinase (MAPKKK) family, participates in proinflammatory cellular signaling pathways by activating JNK/p38 MAPKs and NF-kappaB. To identify drugs that prevent inflammation, we screened inhibitors of TAK1 catalytic activity. We identified a natural resorcylic lactone of fungal origin, 5Z-7-oxozeaenol, as a highly potent inhibitor of TAK1. This compound did not effectively inhibit the catalytic activities of the MEKK1 or ASK1 MAPKKKs, suggesting that 5Z-7-oxozeaenol is a selective inhibitor of TAK1. In cell culture, 5Z-7-oxozeaenol blocked interleukin-1-induced activation of TAK1, JNK/p38 MAPK, IkappaB kinases, and NF-kappaB, resulting in inhibition of cyclooxgenase-2 production. Furthermore, in vivo 5Z-7-oxozeaenol was able to inhibit picryl chloride-induced ear swelling. Thus, 5Z-7-oxozeaenol blocks proinflammatory signaling by selectively inhibiting TAK1 MAPKKK.  相似文献   

16.
V(D)J recombination: in vitro coding joint formation.   总被引:5,自引:4,他引:1       下载免费PDF全文
Antigen receptor genes are assembled through a mechanism known as V(D)J recombination, which involves two different joining reactions: signal and coding joining. Formation of these joints is essential for antigen receptor assembly as well as maintaining chromosomal integrity. Here we report on a cell-free system for coding joint formation using deletion and inversion recombination substrates. In vitro coding joint formation requires RAG1, RAG2, and heat-labile factors present in the nuclear extract of nonlymphoid cells. Both inversion- and deletion-mediated coding joint reactions produce diverse coding joints, with deletions and P nucleotide addition. We also show that deletion-mediated coding joint formation follows the 12/23 rule and requires the catalytic subunit of DNA-dependent protein kinase.  相似文献   

17.
Glycogen synthase kinase 3(GSK3) proteins play key roles in brassinosteroid(BR) signaling during plant growth and development by phosphorylating various substrates. However,how GSK3 protein stability and activity are themselves modulated is not well understood.Here, we demonstrate in vitro and in vivo that C-TERMINAL DOMAIN PHOSPHATASELIKE 3(Os CPL3), a member of the RNA Pol II CTD phosphatase-like family, physically interacts with Os GSK2 in rice(Oryza sativa). Os CPL3 expression was widely det...  相似文献   

18.
19.
P Ferrigno  F Posas  D Koepp  H Saito    P A Silver 《The EMBO journal》1998,17(19):5606-5614
MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.  相似文献   

20.
F Posas  H Saito 《The EMBO journal》1998,17(5):1385-1394
Exposure of yeast cells to increased extracellular osmolarity induces the HOG1 mitogen-activated protein kinase (MAPK) cascade, which is composed of SSK2, SSK22 and STE11 MAPKKKs, PBS2 MAPKK and HOG1 MAPK. The SSK2/SSK22 MAPKKKs are activated by a 'two-component' osmosensor composed of SLN1, YPD1 and SSK1. The SSK1 C-terminal receiver domain interacts with an N-terminal segment of SSK2. Upon hyperosmotic treatment, SSK2 is autophosphorylated rapidly, and this reaction requires the interaction of SSK1 with SSK2. Autophosphorylation of SSK2 is an intramolecular reaction, suggesting similarity to the mammalian MEKK1 kinase. Dephosphorylation of SSK2 renders the kinase inactive, but it can be re-activated by addition of SSK1 in vitro. A conserved threonine residue (Thr1460) in the activation loop of SSK2 is important for kinase activity. Based on these observations, we propose the following two-step activation mechanism of SSK2 MAPKKK. In the first step, the binding of SSK1 to the SSK1-binding site in the N-terminal domain of SSK2 causes a conformational change in SSK2 and induces its latent kinase activity. In the second step, autophosphorylation of SSK2 renders its activity independent of the presence of SSK1. A similar mechanism might be applicable to other MAPKKKs from both yeast and higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号