首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The type II (T2S) and type III (T3S) secretion systems are important for virulence of Xanthomonas oryzae pv. oryzae, causal agent of bacterial leaf blight of rice. The T3S of gram-negative bacterial plant pathogens has been shown to suppress host defense responses, including programmed cell death reactions, whereas the T2S is involved in secreting cell-wall-degrading enzymes. Here, we show that a T3S-deficient (T3S-) mutant of X. oryzae pv. oryzae can induce a basal plant defense response seen as callose deposition, immunize rice against subsequent X. oryzae pv. oryzae infection, and cause cell-death-associated nuclear fragmentation. A T2S- T3S- double mutant exhibited a substantial reduction in the ability to evoke these responses. We purified two major effectors of the X. oryzae pv. oryzae T2S and characterized them to be a cellulase (ClsA) and a putative cellobiosidase (CbsA). The purified ClsA, CbsA, and lipase/esterase (LipA; a previously identified T2S effector) proteins induced rice defense responses that were suppressible by X. oryzae pv. oryzae in a T3S-dependent manner. These defense responses also were inducible by the products of the action of these purified proteins on rice cell walls. We further show that a CbsA- mutant or a ClsA- LipA- double mutant are severely virulence deficient. These results indicate that the X. oryzae pv. oryzae T2S secretes important virulence factors, which induce innate rice defense responses that are suppressed by T3S effectors to enable successful infection.  相似文献   

2.
3.
由Xanthomonas oryzae pv.oryzae(Xoo)引起的白叶枯病是水稻生产中普遍发生、危害严重的一种细菌病害。本研究采用我国和菲律宾的6个Xoo代表菌株,人工接种评价了来源于我国26个省份的174份水稻微核心种质资源对白叶枯病的抗性。结果表明,来源于不同稻作区的种质资源以及籼粳亚种对白叶枯病的抗性存在明显分化,6个粳稻品种和7个籼稻品种对2个或2个以上的菌株具有抗性,其中7-304、山酒谷、麻谷子、包二幅以及古154抗谱较广。本文的研究结果将为水稻抗白叶枯病育种提供有用的信息。  相似文献   

4.
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation.  相似文献   

5.
A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae ( Xoo ) in rice ( Oryza sativa  L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 ( OsHPL2 ), an enzyme for producing C6 volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C6 volatile, ( E )-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of ( E )-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with ( E )-2-hexenal induced resistance to bacterial blight. OsHPL2 -overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived ( E )-2-hexenal play some role in WBPH-induced resistance in rice.  相似文献   

6.
The plant-pathogenic prokaryote Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, one of the most destructive diseases of rice. A nonpolar mutant of the rsmA-like gene rsmA(Xoo) of the Xoo Chinese strain 13751 was constructed by homologous integration with a suicide plasmid. Virulence tests on a host plant, namely the hybrid rice cultivar Teyou 63, showed that the mutant had lost its virulence almost completely, whereas tests on a nonhost, namely castor-oil plant (Ricinus communis), showed that the mutant had also lost the ability to induce a hypersensitive response in the nonhost. In addition, the rsmA(Xoo) mutant produced significantly smaller amounts of the diffusible signal factor, extracellular endoglucanase, amylase and extracellular polysaccharide, but showed significantly higher glycogen accumulation, bacterial aggregation and cell adhesion. The expression of most hrp genes, genes encoding AvrBs3/PthA family members, rpfB, xrvA, glgA, eglXoB and XOO0175 (encoding an α-amylase) was down-regulated in the rsmA(Xoo) mutant. All phenotypes and expression levels of the tested genes in the rsmA(Xoo) mutant were restored to their levels in the wild-type by the presence of rsmA(Xoo) in trans. These results indicate that rsmA(Xoo) is essential for the virulence of Xoo.  相似文献   

7.
The vascular pathogen Xanthomonas oryzae pv. oryzae ( Xoo ) and nonvascular pathogen Xanthomonas oryzae pv. oryzicola ( Xoc ) cause bacterial blight (BB) and bacterial leaf streak (BLS) diseases of rice, respectively. We have previously identified the avirulence gene avrXa27 from Xoo PXO99A, which specifically induces the expression of the rice resistance gene Xa27 , ultimately leading to resistance against BB disease in rice. In this study, we have generated a transgenic rice line (L24) that expresses avrXa27 constitutively under the control of the PR1 promoter, and have examined its role in the host–pathogen interaction. L24 is not more susceptible to BB, indicating that avrXa27 does not contribute to virulence. AvrXa27 retains avirulence activity in L24 and, after crossing with a line containing Xa27 , progeny display phenotypic changes including inhibition of tillering, delay in flowering, stiff leaves, early leaf senescence and activation of pathogenesis-related ( PR ) genes. On challenge with a variety of compatible strains of Xoo and Xoc strain L8, lines with both avrXa27 and Xa27 also show enhanced resistance to bacterial infection. The induction of Xa27 and subsequent inhibition of Xoc growth in Xa27 plants are observed on inoculation with Xoc L8 harbouring avrXa27 . Our results indicate that the heterologous expression of avrXa27 in rice containing Xa27 triggers R gene-specific resistance and, at the same time, confers enhanced resistance to compatible strains of Xoo and Xoc . The expression of AvrXa27 and related proteins in plants has the potential to generate broad resistance in plants.  相似文献   

8.
水稻白叶枯病菌TonB-Dep-Rec蛋白家族成员Tdrxoo的功能鉴定   总被引:2,自引:0,他引:2  
【目的】旨在揭示水稻白叶枯病菌(Xanthomonas oryzaepv.oryzae,Xoo)致病性和运动性及其基因表达的调控途径。【方法】本研究通过基因克隆、序列分析和缺失突变方法,对与应答调节子GacAxoo互作的Tdrxoo的分子特征和功能进行了鉴定。【结果】利用序列特异性引物进行基因扩增,成功地从野生型菌株PXO99A中克隆了tdrxoo基因。Tdrxoo与其它病原黄单胞菌的同源序列高度保守,具有TonB-Dependent-Receptor(TDR)结构域,推测其是位于细菌外膜、可能接收来自细菌体外环境信号的蛋白。用基因标记交换法,构建了△tdrxoo基因缺失突变体。与PXO99A相比,Δtdrxoo在人工培养条件下的生长受到影响,致病性完全丧失,胞外纤维素酶和木聚糖酶活性和运动能力显著减弱,基因互补可以使之恢复;Δtdrxoo嗜铁素产生无明显改变。【结论】Tdrxoo作为一种细胞外膜蛋白,可能参与调控了病菌的生长、致病性、胞外酶活性和运动性等表型。  相似文献   

9.
Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious rice diseases worldwide. A rice gene, Xa26, conferring resistance against Xoo at both seedling and adult stages was isolated by map-based cloning strategies from the rice cultivar Minghui 63. Xa26 belongs to a multigene family consisting of four members. It encodes a leucine-rich repeat (LRR) receptor kinase-like protein and is constitutively expressed. Sequence analysis revealed that IRBB3 and Zhachanglong lines that are resistant to a broad range of Xoo strains, also carry Xa26. However, significant difference in lesion length was observed among these lines after inoculation with a set of Xoo strains. Moreover, transgenic plants carrying Xa26 showed enhanced resistance compared with the donor line of the gene in both seedling and adult stages. These results suggest that the resistance conferred by Xa26 is influenced by the genetic background.  相似文献   

10.
The inheritance of resistance for bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo), was studied in Minghui 63, an elite restorer line for a number of widely used rice hybrids in China. A new dominant gene against a Chinese Xoo strain JL691 in both the seedling and adult stages was identified in Minghui 63 and designated as Xa26( t). Using a total of 477 highly susceptible individuals from an F(2) population, the Xa26( t) locus was mapped to a region of about 1.68 cM. This locus co-segregated with marker R1506 and was 0.21 cM from marker RM224 on one side and 1.47 cM from marker Y6855RA on the other side, in rice chromosome 11. A contig map, composed of five non-redundant bacterial artificial chromosome (BAC) clones and spanning approximately 500 kb in length, was constructed. Analysis of recombination events in the Xa26( t) region with the highly susceptible F(2) individuals anchored the gene locus to a region covered by three overlapped BAC clones. Assay of the lines showing a double crossover in marker loci flanking Xa26( t), in a population of recombinant inbred lines carrying Xa26( t), further delineated the gene to a 20-kb fragment. The Xa26( t) locus is tightly linked to another bacterial blight resistance gene locus, Xa4.  相似文献   

11.
BACKGROUND: Rice plant diseases play a major role as biological constraints on production. One of such rice disease is bacterial leaf blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo). The diffusible signal factor (DSF) synthesized by Xoo has a major role in virulence to rice plant. The DSF synthase RpfF protein, which is related to crotonase superfamily is responsible for the maintaining concentration of DSF. DSF-dependent quorum sensing (QS) system adopts protein- protein interaction mechanism to auto regulates the production of DSF. The antibacterial activity of pesticides against Xoo has not yet been completely understood. Three dimensional structure of RpfF protein was predicted using homology modeling method by MODELLER 9V9 software, SWISS MODEL and GENO3D online tools and structures were validated by Ramachandran plot, TM-Score and RMSD. 3D structure of RpfF (accession number AAL06345) was predicted using DSF synthase of Xanthomonas campestris pv. campestris (Xcc) (PDB ID: 3M6M) as a template. The stereo chemical check reveals the structure developed from the modeller was the best one and the potential ligand binding sites were identified by CASTp Server. The predicted RpfF model provides insight into its structure, active sites and aid in the development of novel inhibitors to control bacterial leaf blight in rice plant. DSF synthase RpfF protein could be used as a novel target to control infection.  相似文献   

12.
13.
摘要:【目的】旨在揭示水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, 简称Xoo) 环鸟苷二磷酸(c-di-GMP)信号蛋白VieAxoo的生物学功能。【方法】本研究通过标记置换法对vieAxoo基因(PXO_04753)进行了缺失突变研究,采用表性测定进行了部分功能鉴定。【结果】从野生型菌株PXO99A中克隆的vieAxoo基因序列与其它病原黄单胞菌的同源序列高度保守。VieAxoo具有参与c-di-GMP降解的磷酸二酯酶(PDE)EAL结构域和磷酸信号识别受体REC结构域  相似文献   

14.
摘要:【目的】为了阐明水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, 简称Xoo)转录调控因子OxyRxoo对过氧化氢(H2O2) 降解途径的调控作用。【方法】本研究对推导的H2O2识别调控基因oxyRxoo进行了基因克隆、序列分析、缺失突变和互补试验及其相关表型的鉴定。【结果】克隆的oxyRxoo基因序列与其它几种病原黄单胞菌的同源序列高度保守。OxyRxoo是LysR家族成员之一,具有PBPb结构域和DNA结合保守结构域(HTH)。用标记交换法构建了△oxyRxoo基因缺失突变体。与野生型菌株PXO99A相比,尽管△oxyRxoo在离体培养条件下的生长无明显变化,但H2O2抗性显著地降低,过氧化物酶(CAT)活性明显下降,基因互补可以使之恢复; 过氧化物酶基因表达下调, oxyRxoo自身表达显著上调。【结论】OxyRxoo作为一个重要转录调控因子,调控了Xoo的 H2O2降解途径。  相似文献   

15.
16.
Liu Q  Yuan M  Zhou Y  Li X  Xiao J  Wang S 《Plant, cell & environment》2011,34(11):1958-1969
Approximately one third of the identified 34 rice major disease resistance (R) genes conferring race-specific resistance to different strains of Xanthomonas oryzae pv. oryzae (Xoo), which causes rice bacterial blight disease, are recessive genes. However, only two of the recessive resistance genes have been characterized thus far. Here we report the characterization of another recessive resistance gene, xa25, for Xoo resistance. The xa25, localized in the centromeric region of chromosome 12, mediates race-specific resistance to Xoo strain PXO339 at both seedling and adult stages by inhibiting Xoo growth. It encodes a protein of the MtN3/saliva family, which is prevalent in eukaryotes, including mammals. Transformation of the dominant Xa25 into a resistant rice line carrying the recessive xa25 abolished its resistance to PXO339. The encoding proteins of recessive xa25 and its dominant allele Xa25 have eight amino acid differences. The expression of dominant Xa25 but not recessive xa25 was rapidly induced by PXO339 but not other Xoo strain infections. The nature of xa25-encoding protein and its expression pattern in comparison with its susceptible allele in rice-Xoo interaction indicate that the mechanism of xa25-mediated resistance appears to be different from that conferred by most of the characterized R proteins.  相似文献   

17.
由水稻黄单胞菌(Xanthomonas oryzae pv.oryzae,简称Xoo)引起的白叶枯病是水稻种植过程中毁灭性的细菌病害,对我国经济和食品安全造成巨大威胁.施用抗生素和化学生物防治手段的防控效果并不稳定,且易污染环境,还存在食品安全问题.为了应对该病害不可预知的爆发,利用噬菌体防控水稻白叶枯病可以作为一种备选方案,以减少化学杀菌剂和抗生素的使用.本研究利用中国不同水稻产区的9株水稻黄单胞菌和模式菌株PXO99A为靶标,从32份土壤样品中分离到了15个高效的Xoo噬菌体单株,说明黄单胞菌噬菌体广泛存在于中国各地的土壤中.选取其中Xoo_sp8和Xoo_sp9,电镜观察确定其具有二十面体的头部和细长的尾部,为典型的有尾噬菌体.宿主谱检测分析发现Xoo_sp8和Xoo_sp9都可以感染除PXO99A以外的9株不同生理小种的水稻黄单胞菌,且在培养基条件下能有效抑制其生长.测定其基因组序列后,根据末端酶大亚基(large terminase subunit,terL)相似性建立其与已报道的不同细菌噬菌体间的系统发育树,发现这两株噬菌体都与已报道的Xoo噬菌体亲缘关系很远,为新型的Xoo噬菌体.本研究分离发掘了15个对Xoo高效感染的噬菌体,为利用噬菌体防控水稻白叶枯病相关杀菌剂产品开发提供了宝贵的种质资源,同时也提出了土壤环境是分离Xoo噬菌体的重要来源的观点.  相似文献   

18.
水稻白叶枯病由Xanthomonas oryzae pv.Oryzae(Xoo)致病菌引起,为水稻三大病害之一,对世界水稻生产造成了严重危害.水稻与Xoo互作符合“基因对基因”假说,是研究植物与细菌互作的典型模式系统.水稻基因组以及Xoo基因组测序的完成,极大地推动了水稻-Xoo互作分子机理的研究.就有关水稻与Xoo互作机制的最新研究进展作一概述.  相似文献   

19.
AtNPR1基因是拟南芥系统获得抗性的一个重要调节基因,在拟南芥中过量表达AtNPR1基因能使拟南芥对细菌和真菌的抗性同时增强.为了研究在水稻中过量表达AtNPR1基因对水稻抗病性的影响,将该基因转入到广西主栽籼稻恢复系品种桂99中.经PCR验证得到了79株转基因植株,DNA斑点杂交表明ATNPR1基因已经整合到桂99染色体DNA中.Northern杂交和RT-PCR分析表明,AtNPR1基因在桂99中已经表达;同时还检测了转基因植株对水稻白叶枯病和稻瘟病的抗性,结果表明转基因植株对该两种病害的抗性均显著增强.  相似文献   

20.
水稻白叶枯病广谱抗性基因Xa21导入两用不育系培矮64S   总被引:17,自引:0,他引:17  
以克隆的Xa21基因为外源基因,成熟胚愈伤组织为转化受体,应用农杆菌介导法对水稻两用型核不育系培矮64S进行转化,获46株转基因植株。PCR和Southern分析结果表明,Xa21已整合到受体基因组。用稻白叶枯病病原菌(Xanthomonasoryzaepv.oryzae)菲律宾小种6号接种鉴定,结果表明大多数转基因植株获得了抗病性。已整合的Xa21基因能够稳定地遗传,在所检测转基因株系的T1代中,Xa21基因显示3:1的分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号