首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cholesterol (5–40 mol%) on the magnetic induced orientation of sphingomyelin/cholesterol multilamellar vesicles (MLVs) was examined using static solid state 31P NMR spectroscopy. The orientation was modeled assuming an ellipsoidal deformation of the vesicles and was monitored as a function of cholesterol concentration and temperature. In addition, the static 31P chemical shift anisotropy (CSA) was used to assess the motional and dynamical changes occurring in the bilayer are reported. An exploration of the factors determining the magnetic orientation in sphingomyelin/cholesterol bilayers from the gel (so) to liquid crystalline (or liquid-ordered, lo) phases is presented and discussed.  相似文献   

2.
The structure of the so-called liquid-ordered (lo) phase of binary mixtures of DPPC-d62 with cholesterol was studied between 20-50 mol% cholesterol using 2H-NMR, FT-IR, DSC, and neutron specular reflection. Different model systems such as multilamellar vesicles, spherical supported vesicles, and oriented multilayers were used. We observed significant changes of the lo phase structure in the physiological relevant temperature region between 30-45°C. 2H-NMR in combination with lineshape simulations provides evidence for a drastic effect of cholesterol on the shape of multilamellar vesicles due to magnetic field orientation. Moreover, the data indicates a significant change of the extent of this partial orientation for DPPC-d62 multilamellar vesicles containing 25 mol% cholesterol between 36-42°C. The semiaxes ratio of the (due to magnetic field orientation) ellipsoidal multilamellar vesicles changes over this temperature range by ≈25%. 2H-NMR and FT-IR measurements indicate changes of the average orientational order at the bilayer center in the same temperature range and a significant increase of the number of end-gauche conformers while the majority of the methylene groups remain in an all-trans conformation. Additionally, specular reflection of neutrons shows a concomitant reduction of the bilayer thickness by 4 Å. Based on a model of the arrangement of DPPC and cholesterol in the lo phase, a molecular mechanism is proposed in which increasing the temperature between 30 and 45°C has the effect of driving cholesterol from the bilayer center towards the head group region.  相似文献   

3.
The process of biological membrane fusion can be analysed by topological methods. Mathematical analysis of the fusion process of vesicles indicated two significant facts: the formation of an inner, transient structure (hexagonal phase - H(II)) and a translocation of some lipids within the membrane. This shift had a vector character and only occurred from the outer to the inner layer. Model membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) was studied. (31)P- and (1)H-NMR methods were used to describe the process of fusion. (31)P-NMR spectra of multilamellar vesicles (MLV) were taken at various temperatures and concentrations of Ca(2+) ions (natural fusiogenic agent). A (31)P-NMR spectrum with the characteristic shape of the H(II) phase was obtained for the molar Ca(2+)/PS ratio of 2.0. During the study, (1)H-NMR and (31)P-NMR spectra for small unilamellar vesicle (SUV), which were dependent on time (concentration of Pr(3+) ions was constant), were also recorded. The presence of the paramagnetic Pr(3+) ions permits observation of separate signals from the hydrophilic part of the inner and outer lipid bilayers. The obtained results suggest that in the process of fusion translocation of phospholipid molecules takes place from the outer to the inner layer of the vesicle and size of the vesicles increase. The NMR study has showed that the intermediate state of the fusion process caused by Ca(2+) ions is the H(II) phase. The experimental results obtained are in agreement with the topological model as well.  相似文献   

4.
Large unilamellar vesicles (LUVs) composed of 1-[2H31]palmitoyl-2-oleoyl phosphatidylcholine (POPC-d31), with diameters of approximately 117 +/- 31 and 180 +/- 44 nm, were prepared by extrusion through polycarbonate filters with pore sizes of 0.1 and 0.2 microns, respectively. The 2H nuclear magnetic resonance (NMR) spectra obtained at 21 degrees C contain two components: a broad component (approximately 17 kHz linewidth) corresponding to the methylene groups and a narrower component originating from the methyl groups. Spectra with increasing powder pattern characteristics were obtained by reducing the rate of phospholipid reorientations by addition of glycerol (to increase the solvent viscosity) and by lowering the temperature. Full powder spectra, characteristic of liquid-crystalline bilayers, were obtained for both LUV samples at 0 degrees C in the presence of 50 wt% glycerol. Individual quadrupolar splittings were not resolved in these spectra, due to broader linewidths in the LUVs, which have significantly shorter values for spin-spin relaxation time T2 measured from the decay of the quadrupolar echo (90 microseconds) than the multilmellar vesicles (MLVs; 540 microseconds). Smoothed order parameter profiles (OPPs) were obtained for these samples by integration of the dePaked spectra. The OPPs were very similar to the OPP of POPC-d31 MLVs in 50 wt% glycerol at the same temperature, indicating that orientational order in MLVs and LUVs with a diameter of > or = 100 nm is essentially the same. The presence of 80 wt% glycerol was found to have a disordering effect on the vesicles.  相似文献   

5.
We have investigated the feasibility of the various possible magnetic resonance probes of lipids which form non-bilayer phases. As a model system we have used equimolar mixtures of phosphatidylethanolamine (PE) and cholesterol, which exhibit a thermotropic transition from a bilayer to a hexagonal phase. Variable temperature electron spin resonance (ESR) spin probe spectra were obtained using random dispersion and oriented lipid systems. Simultations of the ESR spectra were performed in order to aid in the interpretation of the experimental results for the oriented system. 31P- and 2H-nuclear magnetic resonance (NMR) studies were carried out using a deuterated PE. The ESR spin probes in the random dispersions show essentially no effect attributable to the phase transition. However, there are large, reversible effects in the temperature-dependent behaviour for the oriented system. The orientation dependence of the spectra above the transition temperature indicate that the hexagonal phase lipids may spontaneously assume a macroscopic organization on a flat surface. We find, however, that such an organization cannot be unambiguously assigned from the ESR spin probe spectra, and point out a potential difficulty in the interpretation of spin probe spectra in oriented systems. In contrast, the 2H-NMR method provides a reliable monitor of the phase transformation. Taken together, the 2H and 31P data indicate that the structure of the headgroup in PE is quite similar in both the bilayer and hexagonal phase. 2H-NMR should be very useful in probing the structural and dynamic characteristics of lipids in non-bilayer phases.  相似文献   

6.
The phase equilibria in mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE) and water were studied by 31P-NMR and 2H-NMR. The chemical shift anisotropy is greater for DOPC than for DOPE (6–9 ppm in the lamellar phase). This difference can most probably be ascribed to different order parameters for the two lipid head groups. 31P-NMR spectra recorded from a lamellar phase formed by DOPC-DOPE-water below maximum hydration exhibit two resolved, superimposed powder spectra. The chemical shift anisotropy for both phospholipids has greater values at excess water contents than below maximum hydration, and the spectral resolution between DOPC and DOPE in the lamellar phase is strikingly diminished at excess water contents. From 31P-NMR spectra it is possible to observe relative differences in composition between different lipid phase existing in equilibrium. The proportion of DOPE is decreased in the lamellar phase, and is increased in the reversed hexagonal phase, when these phases exist in equilibrium.  相似文献   

7.
Summary Polyethylene glycol, a known cell fusogen, is found to induce the formation of structural defects in egg phosphatidylcholine multilamellar vesicles, as shown by freeze-fracture microscopy.31P NMR spectra of these vesicles reveal the existence of a nonbilayer (isotropic) phase. The observed disruption in the bilayers is believed to be associated with an intermediate stage of membrane fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry - DMPC Dimyristoylphosphatidylcholine - T c Phase transition temperature  相似文献   

8.
The effect of dolichol and dolichyl phosphate on fusion between large unilamellar vesicles comprised of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was studied using a fluorescence resonance energy transfer assay. The influence of dolichyl phosphate on the transbilayer movement of DOPC in multilamellar vesicles (MLV) and large unilamellar vesicles (LUV) composed of DOPC and DOPE (1:2) was investigated by using the phosphatidylcholine-specific transfer protein. 31P-NMR and freeze-fracture electron microscopy were employed to study the macroscopic organization of DOPC and DOPE containing model membranes in the absence or presence of dolichyl phosphate. The results indicate that both dolichol and dolichyl phosphate enhance vesicle fusion in a comparable and concentration-dependent way; the amount of exchangeable PC from MLVs is increased by dolichyl phosphate, probably as a result of fusion processes; dolichyl phosphate destabilizes the bilayer organization in MLVs comprised of DOPE and DOPC, resulting in the formation of hexagonal (HII) phase and 'lipidic' particles.  相似文献   

9.
Many solid-state nuclear magnetic resonance (NMR) approaches for membrane proteins rely on orientation-dependent parameters, from which the alignment of peptide segments in the lipid bilayer can be calculated. Molecules embedded in liquid-crystalline membranes, such as monomeric helices, are highly mobile, leading to partial averaging of the measured NMR parameters. These dynamic effects need to be taken into account to avoid misinterpretation of NMR data. Here, we compare two common NMR approaches: 2H-NMR quadrupolar waves, and separated local field 15N–1H polarization inversion spin exchange at magic angle (PISEMA) spectra, in order to identify their strengths and drawbacks for correctly determining the orientation and mobility of α-helical transmembrane peptides. We first analyzed the model peptide WLP23 in oriented dimyristoylphosphatidylcholine (DMPC) membranes and then contrasted it with published data on GWALP23 in dilauroylphosphatidylcholine (DLPC). We only obtained consistent tilt angles from the two methods when taking dynamics into account. Interestingly, the two related peptides differ fundamentally in their mobility. Although both helices adopt the same tilt in their respective bilayers (~20°), WLP23 undergoes extensive fluctuations in its azimuthal rotation angle, whereas GWALP23 is much less dynamic. Both alternative NMR methods are suitable for characterizing orientation and dynamics, yet they can be optimally used to address different aspects. PISEMA spectra immediately reveal the presence of large-amplitude rotational fluctuations, which are not directly seen by 2H-NMR. On the other hand, PISEMA was unable to define the azimuthal rotation angle in the case of the highly dynamic WLP23, though the helix tilt could still be determined, irrespective of any dynamics parameters.  相似文献   

10.
The effect of PDC-109 binding to dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) and supported membranes was investigated by (31)P NMR spectroscopy and atomic force microscopy. Additionally, the effect of cholesterol on the binding of PDC-109 to phosphatidylcholine (PC) membranes was studied. Binding of PDC-109 to MLVs of DMPC and DPPG induced the formation of an isotropic signal in their (31)P NMR spectra, which increased with increasing protein/lipid ratio and temperature, consistent with protein-induced disruption of the MLVs and the formation of small unilamellar vesicles or micelles but not inverse hexagonal or cubic phases. Incorporation of cholesterol in the DMPC MLVs afforded a partial stabilization of the lamellar structure, consistent with previous reports of membrane stabilization by cholesterol. AFM results are consistent with the above findings and show that addition of PDC-109 leads to a complete breakdown of PC membranes. The fraction of isotropic signal in (31)P NMR spectra of DPPG in the presence of PDC-109 was less than that of DMPC under similar conditions, suggesting a significantly higher affinity of the protein for PC. Confocal microscopic studies showed that addition of PDC-109 to human erythrocytes results in a disruption of the plasma membrane and release of hemoglobin into the solution, which was dependent on the protein concentration and incubation time.  相似文献   

11.
31P-NMR spectra at 162 MHz were used to monitor phase changes of wheat thylakoid membranes as a function of temperature. At room temperature the31P-NMR line was a superposition of anisotropic component characteristic of phospholipid lamellar phase and isotropic line due to inorganic phosphorus or small membrane vesicles arising as an effect of preparation. For temperatures higher than +35 °C an increase of the isotropic component occurs, which is irreversible as the sample is cooled. For the temperatures between +55 °C and +60 °C the presence of the hexagonal phase cylinders is suggested, as monitored by phosphorus lineshape. However, the addition of glycerol stimulates a formation of the isotropic phase. The effect of reconstitution of freeze-dried thylakoid membranes by addition of water or water-glycerol medium to the sample was examined. As lyophilizate was gradually diluted, the increase of isotropic line component was observed. For thylakoid membranes suspended in D2O at the highest dilution examined, the line contribution due to small membrane fragments is not greater than 50%, but in presence of glycerol, this contribution could reach 70%. This suggests that the presence of glycerol increases the formation of the small membrane particles as the thylakoid membrane is reconstituted from lyophilizate. The wheat thylakoid membranes reconstituted from lyophilizate show, in comparison to native membranes, the increased contribution of small membrane vesicles. Moreover, the31P -NMR spectra suggest the appearance of the hexagonal phase cylinders even at +50 °C.Abbreviations DGDG digalactosyldiacylglycerol - DLPC dilinoleoyl phosphatidylcholine - DLPE dilinoleoyl phosphatidylethanolamine - EDTA ethylenediamine-tetraacetic acid - MGDG monogalactosyldiacylglycerol - NMR nuclear magnetic resonance - PC phosphatidylcholine - PG phosphatidylglycerol - PSII photosystem II - TGDG trigalactosyldiacylglycerol - Tris Tris-(hydroxymethyl)-aminomethan - S/N signal to noise ratio  相似文献   

12.
Phosphatidylcholines were incorporated into hexagonal liquid cyrstalline mixtures of the non-ionic detergents Triton X-100 and octaethyleneglycoldodecylether with D2O. It is shown by nuclear magnetic resonance (NMR) that the phospholipids adopt the hexagonal liquid crystalline structure of the detergent host lattice. The anisotropic motion of the phospholipid headgroups seems to be unaffected, whereas the acyl chains are disordered. Increasing phospholipid concentration leads to separation of a lamellar phase. The lamellar structure is also preferred at elevated temperatures. Phosphatidylcholines with saturated acyl chains undergo a transition from the hexagonal liquid crystalline to an ordered lamellar state. The shape of the 31P-NMR signals suggests that pure gel phase phospholipid separates out. The headgroup region of this gel phase phospholipid becomes immobilized after a few weeks of storage below the transition temperature as judged from 31P-NMR. At the same time 2H-NMR exhibits a new signal from D62O undergoing slow isotropic motion. This behavior bears resemblance to the formation of a coagel in fatty acid-water systems.  相似文献   

13.
The phase behavior of bovine rod outer segment disk lipids has been investigated using freeze-fracture and 31P nuclear magnetic resonance (NMR) techniques. 31P-NMR spectra of isolated disk membranes were taken as a function of temperature between 25°C and 45°C. The 31P-NMR spectrum characteristic of phospholipid bilayers was observed at all temperatures both in the absence of Ca2+ and in the presence of 10 mM and 50 mM Ca2+. A similar study was performed on lipids isolated from the disk membranes. In the absence of Ca2+ only lamellar phase behavior was observed. In the presence of less than 10 mM Ca2+, however, there was a change in morphology to non-lamellar structures. Removal of the Ca2+ caused the system to reassume the lamellar form.  相似文献   

14.
The interaction of the 8-toxin peptide isolated from Staphylococcus aureus with the headgroup region of lipid bilayer membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated using deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) spectroscopy. At relatively low peptide/lipid ratios (P/L < 0.10), all 2H- and 31P-NMR spectral lineshapes at 25 degrees C were indicative of a single population of liquid-crystalline lipids in a bilayer arrangement. At these P/L ratios, delta-toxin had only marginal effects on the size of the quadrupole splitting measured from POPC labelled at either the alpha-methylene (POPC-alpha-d2) or the beta-methylene segment (POPC-beta-d2) of the choline headgroup and, similarly small effects on the magnitude of the chemical shift anisotropy (CSA) of the 31P-NMR spectrum. With increasing amounts of delta-toxin (0.10 < P/L < 0.15) the size of the 2H quadrupole splitting from POPC-alpha-d2, as well as the magnitude of the 31P-CSA, decreased progressively and rapidly. The quadrupole splitting from POPC-beta-d2, however, remained relatively unaffected. At yet higher levels of delta-toxin (P/L > 0.15), all 2H- and 31P-NMR spectra indicated the presence of multiple lipid populations experiencing varying degrees of increased conformational disordering. The spectral lineshapes of these apparently nonbilayer spectral components reverted to bilayer-type lineshapes upon lowering the measuring temperature to 5 degrees C. At the utmost highest level of delta-toxin measured here (P/L = 0.20), all 2H- and 31P-NMR spectra consisted of a single, broad, apparently nonbilayer-type component, indicative of hindered but virtual isotropic motional averaging of the POPC headgroups. In this case no reversion to bilayer-type spectra could be obtained by decreasing the temperature. We could obtain no evidence that the conformation of the choline headgroup of POPC was responding to any specific influence of delta-toxin on bilayer surface electrostatics.  相似文献   

15.
Abstract

The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV–aprotinin complexes was determined. Lipid–protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV–aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

16.
Spectral changes in human hepatic tumours and possible systemic effects of tumour on host liver were assessed by 31P amnd 1H in vitro NMR spectroscopy. The 1H and 31P spectra from liver tumour biopsies showed significant elevation in phosphoethanolamine, phosphocholine, taurine, citrate, alanine, lactate and glycine, and significant reduction in GPE (glycerophosphoethanolamine), GPC (glycerophosphocholine), creatine and threonine compared to histologically normal tissue. 31P-NMR spectra obtained from histologically normal tissue within tumour-bearing livers showed significant elevation in phosphoethanolamine and phosphocholine compared to data from liver biopsies from nontumour-bearing patients (pancreatitis). These results suggest that alterations in membrane metabolism in host liver can be detected by 31P-NMR.  相似文献   

17.
F A Nezil  S Bayerl    M Bloom 《Biophysical journal》1992,61(5):1413-1426
Deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) and freeze-fracture electron microscopy were used to study spontaneous vesiculation in model membranes composed of POPC:POPS with or without cholesterol. The NMR spectra indicated the presence of a central isotropic line, the intensity of which is reversibly and linearly dependent upon temperature in the L alpha phase, with no hysteresis when cycling between higher and lower temperatures. Freeze-fracture microscopy showed small, apparently connected vesicles that were only present when the samples were frozen (for freeze-fracture) from an initial temperature of 40-60 degrees C, and absent when the samples are frozen from an initial temperature of 20 degrees C. Analysis of motional narrowing was consistent with the isotropic lines being due to lateral diffusion in (and tumbling of) small vesicles (diameters approximately 50 nm). These results were interpreted in terms of current theories of shape fluctuations in large unilamellar vesicles which predict that small daughter vesicles may spontaneously "erupt" from larger parent vesicles in order to expel the excess area created by thermal expansion of the bilayer surface at constant volume. Assuming that all the increased area due to increasing temperature is associated with the isotropic lines, the NMR results allowed a novel estimate of the coefficient of area expansion alpha A in multilamellar vesicles (MLVs) which is in good agreement with micromechanical measurements upon giant unilamellar vesicles of similar composition. Experiments performed on unilamellar vesicles, which had been placed upon glass beads, confirmed that alpha A determined in this way is unchanged compared with the MLV case. Addition of the highly positively charged (extrinsic) myelin basic protein (MBP) to a POPC:POPS system showed that membrane eruptions of the type described here occur in response to the presence of this protein.  相似文献   

18.
In suspensions of the green alga Chlorella fusca the influence of high pH and high ethylene-diamine-tetraacetic acid concentrations in the external medium, of French-press and perchloric acid extraction of the cells and of alkalization of the intracellular pH on the polyphosphate signal in 31P-nuclear magnetic resonance (31P NMR) spectra was investigated.The results show that part of the polyphosphates of asynchronous Chlorella cells are located outside the cytoplasmic membrane and complexed with divalent metal-ions. These polyphosphates are tightly bound to the cell wall and/or the cytoplasmic membrane and are not susceptible to hydrolyzation by strong acid at room temperature, in contrast to the intracytoplasmic polyphosphates.Upon alkalization of the internal pH of Chlorella cells, polyphosphates, previously not visible in the spectra become detectable by 31P-NMR-spectroscopy. 31P-NMR spectroscopic monitoring of polyphosphates during gradual alkalization of the extra-and intracellular space is proposed as a quick method for the estimation of the cellular polyphosphate content and distribution.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - NTP/NDP Nucleotide triphosphate/-diphosphate - PCA Perchloric acid - 31P-NMR 31P-nuclear magnetic resonance - PolyP polyphosphates - PP1, PP2, PP3 terminal, second and third phosphate residue of polyphosphates, respectively - PP4 core phosphate residues of polyphosphates  相似文献   

19.
We have investigated in the present study the effect of both non-selective and selective cationic 14-mer peptides on the lipid orientation of DMPC bilayers by 31P solid-state nuclear magnetic resonance (NMR) spectroscopy. Depending on the position of substitution, these peptides adopt mainly either an α-helical structure able to permeabilize DMPC and DMPG vesicles (non-selective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). Several systems have been investigated, namely bilayers mechanically oriented between glass plates as well as bicelles oriented with their normal perpendicular or parallel to the external magnetic field. The results have been compared with spectral simulations with the goal of elucidating the difference in the interaction of these two types of peptides with zwitterionic lipid bilayers. The results indicate that the perturbation induced by selective peptides is much greater than that induced by non-selective peptides in all the lipid systems investigated, and this perturbation has been associated to the aggregation of the selective β-sheet peptides in these systems. On the other hand, the oriented lipid spectra obtained in the presence of non-selective peptides suggest the presence of toroidal pores. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

20.
Nuclear magnetic resonance (NMR) technology was applied to study the glucose metabolism inTribolium confusum (Coleoptera).13C signals of D-(1-13C)glucose eaten by beetles were clearly detected in such metabolites of the glucose metabolism as glycogen, trehalose, triacylglycerol, alanine and proline by13C-NMR. After glucose feeding the31P-NMR spectra ofT. confusum showed the signal intensity increases in arginine-phosphate, sugar-phosphate and uridine diphosphoglucose. The results demonstrated the potential of NMR analysis for the study of glucose metabolism inT. confusum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号