首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same α-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC50 similar to the apparent KM of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.  相似文献   

2.
New Glycoprotein-Associated Amino Acid Transporters   总被引:2,自引:0,他引:2  
The L-type amino acid transporter LAT1 has recently been identified as being a disulfide-linked ``light chain' of the ubiquitously expressed glycoprotein 4F2hc/CD98. Several LAT1-related transporters have been identified, which share the same putative 12-transmembrane segment topology and also associate with the single transmembrane domain 4F2hc protein. They display differing amino acid substrate specificities, transport kinetics and localizations such as, for instance, y+LAT1 which is localized at the basolateral membrane of transporting epithelia, and the defect of which causes lysinuric protein intolerance. The b0,+AT transporter which associates with the 4F2hc-related rBAT protein to form the luminal high-affinity diamino acid transporter defective in cystinuria, belongs to the same family of glycoprotein-associated amino acid transporters (gpaATs). These glycoprotein-associated transporters function as amino acid exchangers. They extend the specificity range of vectorial amino acid transport when located in the same membrane as carriers that unidirectionally transport one of the exchanged substrates. gpaATs belong to a phylogenetic cluster within the amino acid/polyamine/choline (APC) superfamily of transporters. This cluster, which we designate the LAT family (named after its first vertebrate member), includes some members from nematodes, yeast and bacteria. The latter of these proteins presumably lack association with a second subunit. In this review, we focus on the animal members of the LAT cluster that form, together with some of the nematode members, the family of glycoprotein-associated amino acid transporters (gpaAT family). Received: 20 July 1999/Revised: 7 September 1999  相似文献   

3.
Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.  相似文献   

4.
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis l-serine/l-threonine exchanger is the best-known prokaryotic paradigm of the mammalian l–amino acid transporter (LAT) family. Unfortunately, SteT’s lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.  相似文献   

5.
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.  相似文献   

6.
The heteromeric amino acid transporters b(0,+)AT-rBAT (apical), y(+)LAT1-4F2hc, and possibly LAT2-4F2hc (basolateral) participate to the (re)absorption of cationic and neutral amino acids in the small intestine and kidney proximal tubule. We show now by immunofluorescence that their expression levels follow the same axial gradient along the kidney proximal tubule (S1>S2S3). We reconstituted their co-expression in MDCK cell epithelia and verified their polarized localization by immunofluorescence. Expression of b(0,+)AT-rBAT alone led to a net reabsorption of l-Arg (given together with l-Leu). Coexpression of basolateral y(+)LAT1-4F2hc increased l-Arg reabsorption and reversed l-Leu transport from (re)absorption to secretion. Similarly, l-cystine was (re)absorbed when b(0,+)AT-rBAT was expressed alone. This net transport was further increased by the coexpression of 4F2hc, due to the mobilization of LAT2 (exogenous and/or endogenous) to the basolateral membrane. In summary, apical b(0,+)AT-rBAT cooperates with y(+)LAT1-4F2hc or LAT2-4F2hc for the transepithelial reabsorption of cationic amino acids and cystine, respectively. The fact that the reabsorption of l-Arg led to the secretion of l-Leu demonstrates that the implicated heteromeric amino acid transporters function in epithelia as exchangers coupled in series and supports the notion that the parallel activity of unidirectional neutral amino acid transporters is required to drive net amino acid reabsorption.  相似文献   

7.
Previously we demonstrated that the insulin- and amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the System L transporters (LAT1 and LAT2), and the proton-assisted amino acid transporters (PAT1 and PAT2) have crucial roles in the activation of mTORC1 and that the abundance of amino acid transporters is positively correlated with their activation. This study aimed to determine the effect of the post-prandial rise in insulin and amino acids on the abundance or activation of SNAT2, SNAT3, LAT1, LAT2, PAT1, and PAT2 and whether the response is modified by development. Overnight fasted 6- and 26-day-old pigs were infused for 2 h with saline (Control) or with insulin or amino acids to achieve fed levels while amino acids or insulin, respectively, as well as glucose were maintained at fasting levels. The abundance of SNAT2, SNAT3, LAT1, LAT2, PAT1, and PAT2 was higher in muscle of 6- compared with 26-day-old pigs. The abundance of the PAT2–mTOR complex was greater in 6- than in 26-day-old pigs, consistent with the higher activation of mTORC1. Neither insulin nor amino acids altered amino acid transporter or PAT2–mTOR complex abundance. In conclusion, the amino acid transporters, SNAT 2/3, LAT 1/2, and PAT1/2, likely have important roles in the enhanced amino acid-induced activation of mTORC1 in skeletal muscle of the neonate.  相似文献   

8.
Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1 mg of HAT from 2 l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.  相似文献   

9.
LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper that targeted inactivation of Slc7a8 leads to increased urinary loss of small neutral amino acids. Development and growth of Slc7a8(-/-) mice appears normal, suggesting functional compensation of neutral amino acid transport by alternative transporters in kidney, intestine and placenta. Movement co-ordination is slightly impaired in mutant mice, although cerebellar development and structure remained inconspicuous. Circulating thyroid hormones, thyrotropin and thyroid hormone-responsive genes remained unchanged in Slc7a8(-/-) mice, possibly because of functional compensation by the thyroid hormone transporter Mct8 (monocarboxylate transporter 8), which is co-expressed in many cell types. The reason for the mild neurological phenotype remains unresolved.  相似文献   

10.
Blondeau JP 《Gene》2002,286(2):241-248
The L-type (LAT) family of amino acid transporters is composed of exchangers for neutral, cationic, and anionic amino acids. They form functional heterodimers with membrane glycoproteins, rBAT or 4F2hc/CD98, to which they are linked by a disulphide bond. We report the molecular cloning and tissue expression of new mouse and human homologues of the LAT family, termed mXAT1, mXAT2 and hXAT2. The latter two proteins may correspond to ortholog genes in mouse and human. The hXAT2 gene is located on chromosome 8q21.3. The cloned X amino acid transporter (XAT) cDNAs are predicted to encode proteins of about 50 kDa. From a phylogenetic point of view, the three XAT proteins cluster together, but sequence comparison and secondary structure prediction show that they are also related to the members of the LAT family. Like these transporters, the XAT proteins show 12 transmembrane domains and a conserved cysteine residue, located in the second extracellular loop. This conserved cysteine is involved in the disulphide bond formed between the known members of the LAT family and 4F2hc or rBAT. The mXAT1 and hXAT2 mRNAs are expressed in the kidney but they are not detectable in a variety of other tissues. The corresponding proteins were efficiently translated following transfection of their cDNAs in Chinese hamster ovary (CHO) cells. However, cDNA transfection in CHO cells did not induce amino acid uptake, even when cotransfected with vectors expressing 4F2hc or rBAT. This could be related to the fact that mXAT1 and hXAT2 did not form detectable disulphide-linked heterodimers with 4F2hc or rBAT when they were co-expressed in CHO cells. Identification of other putative partner(s) of these LAT family-related transporters may be necessary to understand their role in renal physiology.  相似文献   

11.
Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.  相似文献   

12.
Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra(Rl)). Characterization of the solute specificity of Bra(Rl) shows it to be the second general amino acid permease of R. leguminosarum. Although Bra(Rl) has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (L-glutamate, L-arginine, and L-histidine), in addition to neutral amino acids (L-alanine and L-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be alpha-amino acids. Consistent with this, Bra(Rl) is the first ABC transporter to be shown to transport gamma-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by Bra(Rl) does not appear to be stereospecific as D amino acids cause significant inhibition of uptake of L-glutamate and L-leucine. Unlike all other solutes tested, L-alanine uptake is not dependent on solute binding protein BraC(Rl). Therefore, a second, unidentified solute binding protein may interact with the BraDEFG(Rl) membrane complex during L-alanine uptake. Overall, the data indicate that Bra(Rl) is a general amino acid permease of the HAAT family. Furthermore, Bra(Rl) has the broadest solute specificity of any characterized bacterial amino acid transporter.  相似文献   

13.
Su YH  Frommer WB  Ludewig U 《Plant physiology》2004,136(2):3104-3113
More than 50 distinct amino acid transporter genes have been identified in the genome of Arabidopsis, indicating that transport of amino acids across membranes is a highly complex feature in plants. Based on sequence similarity, these transporters can be divided into two major superfamilies: the amino acid transporter family and the amino acid polyamine choline transporter family. Currently, mainly transporters of the amino acid transporter family have been characterized. Here, a molecular and functional characterization of amino acid polyamine choline transporters is presented, namely the cationic amino acid transporter (CAT) subfamily. CAT5 functions as a high-affinity, basic amino acid transporter at the plasma membrane. Uptake of toxic amino acid analogs implies that neutral or acidic amino acids are preferentially transported by CAT3, CAT6, and CAT8. The expression profiles suggest that CAT5 may function in reuptake of leaking amino acids at the leaf margin, while CAT8 is expressed in young and rapidly dividing tissues such as young leaves and root apical meristem. CAT2 is localized to the tonoplast in transformed Arabidopsis protoplasts and thus may encode the long-sought vacuolar amino acid transporter.  相似文献   

14.
The L-arginine/agmatine antiporter AdiC is a key component of the arginine-dependent extreme acid resistance system of Escherichia coli. Phylogenetic analysis indicated that AdiC belongs to the amino acid/polyamine/organocation (APC) transporter superfamily having sequence identities of 15-17% to eukaryotic and human APC transporters. For functional and structural characterization, we cloned, overexpressed, and purified wild-type AdiC and the point mutant AdiC-W293L, which is unable to bind and consequently transport L-arginine. Purified detergent-solubilized AdiC particles were dimeric. Reconstitution experiments yielded two-dimensional crystals of AdiC-W293L diffracting beyond 6 angstroms resolution from which we determined the projection structure at 6.5 angstroms resolution. The projection map showed 10-12 density peaks per monomer and suggested mainly tilted helices with the exception of one distinct perpendicular membrane spanning alpha-helix. Comparison of AdiC-W293L with the projection map of the oxalate/formate antiporter from Oxalobacter formigenes, a member from the major facilitator superfamily, indicated different structures. Thus, two-dimensional crystals of AdiC-W293L yielded the first detailed view of a transport protein from the APC superfamily at sub-nanometer resolution.  相似文献   

15.
Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.  相似文献   

16.
Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.  相似文献   

17.
System L-type transport of large neutral amino acids is mediated by ubiquitous LAT1-4F2hc and epithelial LAT2-4F2hc. These heterodimers are thought to function as obligatory exchangers, but only influx properties have been studied in some detail up until now. Here we measured their intracellular substrate selectivity, affinity and exchange stoichiometry using the Xenopus oocyte expression system. Quantification of amino acid influx and efflux by HPLC demonstrated an obligatory amino acid exchange with 1:1 stoichiometry. Strong, differential trans-stimulations of amino acid influx by injected amino acids showed that the intracellular substrate availability limits the transport rate and that the efflux selectivity range resembles that of influx. Compared with high extracellular apparent affinities, LAT1- and LAT2-4F2hc displayed much lower intracellular apparent affinities (apparent K(m) in the millimolar range). Thus, the two system L amino acid transporters that are implicated in cell growth (LAT1-4F2hc) and transcellular transport (LAT2-4F2hc) are obligatory exchangers with relatively symmetrical substrate selectivities but strongly asymmetrical substrate affinities such that the intracellular amino acid concentration controls their activity.  相似文献   

18.
The activity of placental amino acid transporters is decreased in intrauterine growth restriction (IUGR), but the underlying regulatory mechanisms have not been established. Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway has been shown to decrease the activity of the system L amino acid transporter in human placental villous fragments, and placental mTOR activity is decreased in IUGR. In the present study, we used cultured primary trophoblast cells to study mTOR regulation of placental amino acid transporters in more detail and to test the hypothesis that mTOR alters amino acid transport activity by changes in transporter expression. Inhibition of mTOR by rapamycin significantly reduced the activity of system A (-17%), system L (-28%), and taurine (-40%) amino acid transporters. mRNA expression of isoforms of the three amino acid transporter systems in response to mTOR inhibition was measured using quantitative real-time PCR. mRNA expression of l-type amino acid transporter 1 (LAT1; a system L isoform) and taurine transporter was reduced by 13% and 50%, respectively; however, mTOR inhibition did not alter the mRNA expression of system A isoforms (sodium-coupled neutral amino acid transporter-1, -2, and -4), LAT2, or 4F2hc. Rapamycin treatment did not significantly affect the protein expression of any of the transporter isoforms. We conclude that mTOR signaling regulates the activity of key placental amino acid transporters and that this effect is not due to a decrease in total protein expression. These data suggest that mTOR regulates placental amino acid transporters by posttranslational modifications or by affecting transporter translocation to the plasma membrane.  相似文献   

19.
Basolateral efflux is a necessary step in transepithelial (re)absorption of amino acids from small intestine and kidney proximal tubule. The best characterized basolateral amino acid transporters are y+LAT1-4F2hc and LAT2-4F2hc that function as obligatory exchangers and thus, do not contribute to net amino acid (re)absorption. The aromatic amino acid transporter TAT1 was shown previously to localize basolaterally in rat's small intestine and to mediate the efflux of L-Trp in the absence of exchange substrate, upon expression in Xenopus oocytes. We compared here the amino acid influx and efflux via mouse TAT1 in Xenopus oocytes. The results show that mTAT1 functions as facilitated diffusion pathway for aromatic amino acids and that its properties are symmetrical in terms of selectivity and apparent affinity. We show by real-time RT-PCR that its mRNA is highly expressed in mouse small intestine mucosa, kidney, liver, and skeletal muscle as well as present in all other tested tissues. We show that mTAT1 is not N-glycosylated and that it localizes to the mouse kidney proximal tubule. This expression is characterized by an axial gradient similar to that of the luminal neutral amino acid transporter B0AT1 and shows the same basolateral localization as 4F2hc. mTAT1 also localizes to the basolateral membrane of small intestine enterocytes and to the sinusoidal side of perivenous hepatocytes. In summary, we show that TAT1 is a basolateral epithelial transporter and that it can function as a net efflux pathway for aromatic amino acids. We propose that it, thereby, may supply parallel exchangers with recycling uptake substrates that could drive the efflux of other amino acids.  相似文献   

20.
LAT1 (SLC7A5) and CD98 (SLC3A2) constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. Whether one or both subunits are competent for transport is still unclear. The present work aims to solve this question using different experimental strategies. Firstly, LAT1 and CD98 were immuno-detected in protein extracts from SiHa cells. Under oxidizing conditions, i.e., without addition of SH (thiol) reducing agent DTE, both proteins were revealed as a 120 kDa major band. Upon DTE treatment separated bands, corresponding to LAT1(35 kDa) or CD98(80 kDa), were detected. LAT1 function was evaluated in intact cells as BCH sensitive [3H]His transport inhibited by hydrophobic amino acids. Antiport of [3H]His was measured in proteoliposomes reconstituted with SiHa cell extract in presence of internal His. Transport was increased by DTE. Hydrophobic amino acids were best inhibitors in addition to hydrophilic Tyr, Gln, Asn and Lys. Cys, Tyr and Gln, included in the intraliposomal space, were transported in antiport with external [3H]His. Similar experiments were performed in proteoliposomes reconstituted with the recombinant purified hLAT1. Results overlapping those obtained with native protein were achieved. Lower transport of [3H]Leu and [3H]Gln with respect to [3H]His was detected. Kinetic asymmetry was found with external Km for His lower than internal one. No transport was detected in proteoliposomes reconstituted with recombinant hCD98. The experimental data demonstrate that LAT1 is the sole transport competent subunit of the heterodimer. This conclusion has important outcome for following studies on functional characterization and identification of specific inhibitors with potential application in human therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号