首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Point mutations of dehaloperoxidase-hemoglobin A (DHP A) that affect the surface charge have been prepared to study the interaction between DHP A with its substrate 2,4,6-trichlorophenol (TCP). Kinetic studies of these surface mutations showed a correlation, in which the more positively charged mutants have increased catalytic efficiency compared with wild type DHP A. As a result, the hypothesis of this study is that there is a global electrostatic interaction between DHP A and TCP. The electrostatic nature of substrate binding was further confirmed by the result that kinetic assays of DHP A were affected by ionic strength. Furthermore, isoelectric focusing (IEF) gel study showed that the pI-6.8 for DHP A, which indicates that DHP A has a slight negative charge pH 7, consistent with the kinetic observations.  相似文献   

2.
两个品系豚鼠对化学介质诱导产生气道反应的差异性研究   总被引:4,自引:0,他引:4  
目的 研究新育成的Zmu 1∶DHP豚鼠气道对外界化学介质诱导产生的反应性。为研究哮喘选择和提供具有较高敏感性的速发型过敏性动物模型。方法 采用雾化气体吸入法 ,按递增浓度 ,让动物吸入组胺及乙酰胆碱气体 ,记录豚鼠到达哮喘发作时的介质浓度和呼吸频率及幅度 ,评定对化学介质的敏感程度 ,同时用DHP品系豚鼠进行对照。结果 当 0 2 %组胺浓度雾化吸入时 ,Zmu 1∶DHP豚鼠哮喘发作的呼吸频率及每分钟通气量 ,显著大于DHP豚鼠 (P <0 0 5 ) ;当 0 4 %浓度时 ,前者的潮气量及每分钟通气量 ,比后者有增高的趋势 (P <0 0 5 ) ;当0 6 %浓度时 ,前者的潮气量及每分钟通气量 ,显著小于后者 (P <0 0 5 )。二个品系豚鼠吸入乙酰胆碱雾化气体后 ,无明显差异 (P >0 0 5 )。结论 在低浓度组胺雾化吸入时 ,Zmu 1∶DHP品系豚鼠产生哮喘的敏感性显著高于DHP豚鼠 ;高浓度时 ,气道可能因失敏而降低反应性  相似文献   

3.
The dehydrogenative polymerization of coniferyl alcohol by horseradish peroxidase was performed in 0.10 M phosphate buffer at 27 degrees C. Dehydrogenative polymer (DHP) from coniferyl alcohol was characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. The ratio of 8-O-4':8-5':8-8' linkages was determined by the 1H NMR spectrum of DHP acetate which had good solubility. In "end-wise like" polymerization (the slow addition of hydrogen peroxide), addition of alpha-cyclodextrin to the medium led to DHP with increased 8-O-4' content and a decrease in 8-5' linkages. Under higher pH conditions, DHP with higher 8-O-4' and 8-5' content was obtained in the presence of alpha-cyclodextrin. In the end-wise polymerization (the slow additions of coniferyl alcohol and hydrogen peroxide), using alpha-cyclodextrin also gave DHP with a 8-O-4' richer structure than that prepared in no additive system. The analysis of thioacidolysis products from DHP supported the results of the alpha-cyclodextrin effects on the 8-O-4'-rich structure of DHP. The 8-O-4' structure in DHP prepared in the presence of alpha-cyclodextrin had racemic form as shown by ozonation.  相似文献   

4.
The Devils Hole pupfish (Cyprinodon diabolis; DHP) is an icon of conservation biology. Isolated in a 50 m2 pool (Devils Hole), DHP is one of the rarest vertebrate species known and an evolutionary anomaly, having survived in complete isolation for thousands of years. However, recent findings suggest DHP might be younger than commonly thought, potentially introduced to Devils Hole by humans in the past thousand years. As a result, the significance of DHP from an evolutionary and conservation perspective has been questioned. Here we present a high‐resolution genomic analysis of DHP and two closely related species, with the goal of thoroughly examining the temporal divergence of DHP. To this end, we inferred the evolutionary history of DHP from multiple random genomic subsets and evaluated four historical scenarios using the multispecies coalescent. Our results provide substantial information regarding the evolutionary history of DHP. Genomic patterns of secondary contact present strong evidence that DHP were isolated in Devils Hole prior to 20–10 ka and the model best supported by geological history and known mutation rates predicts DHP diverged around 60 ka, approximately the same time Devils Hole opened to the surface. We make the novel prediction that DHP colonized and have survived in Devils Hole since the cavern opened, and the two events (colonization and collapse of the cavern's roof) were caused by a common geologic event. Our results emphasize the power of evolutionary theory as a predictive framework and reaffirm DHP as an important evolutionary novelty, worthy of continued conservation and exploration.  相似文献   

5.
Du J  Huang X  Sun S  Wang C  Lebioda L  Dawson JH 《Biochemistry》2011,50(38):8172-8180
Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O(2) transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity ~10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of "peroxidase-like" Mb mutants and "Mb-like" DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned ~0.3 and ~0.8 ?, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the "DHP-like" position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual-function enzyme DHP.  相似文献   

6.
Belyea J  Gilvey LB  Davis MF  Godek M  Sit TL  Lommel SA  Franzen S 《Biochemistry》2005,44(48):15637-15644
Amphitrite ornata dehaloperoxidase (DHP) is a heme enzyme with a globin structure, which is capable of oxidizing para-halogenated phenols to the corresponding quinones. Cloning, high-level expression, and purification of recombinant DHP are described. Recombinant DHP was assayed by stopped-flow experiments for its ability to oxidatively debrominate 2,4,6-tribromophenol (TBP). The enzymatic activity of the ferric form of recombinant DHP is intermediate between that of a typical peroxidase (horseradish peroxidase) and a typical globin (horse heart myoglobin). The present study shows that, unlike other known peroxidases, DHP activity requires the addition of substrate, TBP, prior to the cosubstrate, peroxide. The presence of a substrate-binding site in DHP is consistent with a two-electron oxidation mechanism and an obligatory order for activation of the enzyme by addition of the substrate prior to the cosubstrate.  相似文献   

7.
Interfacial affinity between lignin model compound (dehydrogenation polymer [DHP]) and cellulose nanocristals (CN) was studied before building a nanocomposite cellulose/lignin in multilayer form by spin-coating method. The adsorption isotherm of DHP was measured by ellipsometry at the liquid/CN film interface and showed that the surface concentration of adsorbed DHP increases with the bulk concentration in solution. The DHP appeared as globular structures on cellulosic film, as observed by AFM. Spreading a dense lignin layer on CN film gave rise to the disappearance of the InfraRed resonance bands related to the DHP aromatics. The film obtained from alternate layers of cellulose/DHP was transparent in visible light and had weak absorption in UV wavelengths. Optical properties measured in the visible wavelength range by ellipsometry and spectrophotometry indicated that beyond six bilayers (cellulose/DHP), the composite exhibits antireflexion properties.  相似文献   

8.
Mean duration of heart period (DHP chi) and its standard deviation (SD), indicating heart arrhythmia and significantly correlating with DHP chi, decreased with stepwise increase of dynamic muscular work on a bicycle ergometer and static muscular work of the right upper arm flexor beyond the limit of permanent performance. This correlation, however, can be understood globally only, since the decrease of DHP chi and SD was not always continuous, but frequently changing, with alterations of increase and decrease from step to step of dynamic work load and from minute to minute of static muscular strain. This concerned particularly SD. A continuous decrease of DHP chi in dynamic muscular work was obtained only by load differences of 40 W, not by differences of 10 or 20 W. A more continuous decrease of SD was also noted during greater load-differences. The significant correlation of DHP chi and SD was lost at a load-difference of 10 W on the 60 W-step and at a load-difference of 40 W on the 180 W-step. Great loads caused at the same load-step less frequent variations of DHP chi, not of SD, than little loads. If no preceding work took place, a contary reaction of DHP chi and SD was noted often at the first load-step. Static work with greater holding force caused a more continuous decrease of DHP chi, in a lower degree of SD, than static work with lower holding force. DHP chi decreased mainly in the first minute of strain. The adjustment of mean heart rate and heart arrhythmia on a level corresponding to increase of load is influenced essentially by the difference of muscular strain appearing between two periods of work load or periods of holding. The regulation of the mean duration of heart period and of heart arrhythmia does not necessarily depend on each other.  相似文献   

9.
Consumption of dihydroxyacetone and pyruvate (DHP) increases muscle extraction of glucose in normal men. To test the hypothesis that these three-carbon compounds would improve glycemic control in diabetes, we evaluated the effect of DHP on plasma glucose concentration, turnover, recycling, and tolerance in 7 women with noninsulin-dependent diabetes. The subjects consumed a 1,500-calorie diet (55% carbohydrate, 30% fat, 15% protein), randomly containing 13% of the calories as DHP (1/1) or Polycose (placebo; PL), as a drink three times daily for 7 days. On the 8th day, primed continuous infusions of [6-3H]-glucose and [U-14C]-glucose were begun at 05.00 h, and at 09.00 h a 3-hour glucose tolerance test (75 g glucola) was performed. Two weeks later the subjects repeated the study with the other diet. The fasting plasma glucose level decreased by 14% with DHP (DHP = 8.0 +/- 0.9 mmol/l; PL = 9.3 +/- 1.0 mmol/l, p less than 0.05) which accounted for lower postoral glucose glycemia (DHP = 13.1 +/- 0.8 mmol/l, PL = 14.7 +/- 0.8 mmol/l, p less than 0.05). [6-3H]-glucose turnover (DHP = 1.50 +/- 0.19 mg.kg-1.min-1, PL = 1.77 +/- 0.21 mg.kg-1.min-1, p less than 0.05) and glucose recycling, the difference in [6-3H]-glucose and [U-14C]-glucose turnover rates, decreased with DHP (DHP = 0.25 +/- 0.07 mg.kg-1.min-1, PL = 0.54 +/- 0.10 mg.kg-1.min-1, p less than 0.05). Fasting and postoral glucose, plasma insulin, glucagon, and C peptide levels were unaffected by DHP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Shan W  Liu H  Shi J  Yang L  Hu N 《Biophysical chemistry》2008,134(1-2):101-109
Anionic surfactant dihexadecyl phosphate (DHP) with two hydrocarbon chains can be self-assembled into a double-layer structure with tail-to-tail configuration and negatively charged head groups toward outside in its aqueous dispersion. Due to this unique biomembrane-like structure, the "charge reversal" in DHP adsorption on solid surface was realized, and the DHP was successfully assembled with positively charged myoglobin (Mb) or hemoglobin (Hb) into {DHP/protein}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor or confirm the film assembly process. The {DHP/protein}(n) films grown on pyrolytic graphite (PG) electrodes showed a pair of well-defined and nearly reversible CV peaks at about -0.35 V vs SCE in pH 7.0 buffers, characteristic of the protein heme Fe(III)/Fe(II) redox couples. Based on the direct electrochemistry of heme proteins, the {DHP/protein}(n) films could also be used to electrochemically catalyze reduction of oxygen, hydrogen peroxide and nitrite with significant lowering of reduction overpotentials. Scanning electron microscopy (SEM), UV-vis spectroscopy, and reflectance absorption infrared (RAIR) spectroscopy were employed to characterize the {DHP/protein}(n) films, suggesting that the proteins in the films retain their near-native structure.  相似文献   

11.
DJ‐1 was recently reported to mediate the cardioprotection of delayed hypoxic preconditioning (DHP) by suppressing hypoxia/reoxygenation (H/R)‐induced oxidative stress, but its mechanism against H/R‐induced oxidative stress during DHP is not fully elucidated. Here, using the well‐established cellular model of DHP, we again found that DHP significantly improved cell viability and reduced lactate dehydrogenase release with concurrently up‐regulated DJ‐1 protein expression in H9c2 cells subjected to H/R. Importantly, DHP efficiently improved mitochondrial complex I activity following H/R and attenuated H/R‐induced mitochondrial reactive oxygen species (ROS) generation and subsequent oxidative stress, as demonstrated by a much smaller decrease in reduced glutathione/oxidized glutathione ratio and a much smaller increase in intracellular ROS and malondialdehyde contents than that observed for the H/R group. However, the aforementioned effects of DHP were antagonized by DJ‐1 knockdown with short hairpin RNA but mimicked by DJ‐1 overexpression. Intriguingly, pharmacological inhibition of mitochondria complex I with Rotenone attenuated all the protective effects caused by DHP and DJ‐1 overexpression, including maintenance of mitochondria complex I and suppression of mitochondrial ROS generation and subsequent oxidative stress. Taken together, this work revealed that preserving mitochondrial complex I activity and subsequently inhibiting mitochondrial ROS generation could be a novel mechanism by which DJ‐1 mediates the cardioprotection of DHP against H/R‐induced oxidative stress damage.  相似文献   

12.
Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation.  相似文献   

13.
The synthesis and biological activity of some novel analogs of the calcium channel blocker nifedipine, i.e., derivatives of 2.6-dimethyl-3.5-diethoxycarbonyl-4-(3-nitrophenyl)-1.4-dihydropyridine (DHP) were studied. One radioactive and two photoactivable DHP derivatives were obtained. DHP hemisuccinate was used to prepare an affinity matrix, DHP-Sepharose as well as a DHP-albumin conjugate; the latter was used for anti-DHP antibodies generation in rabbits. All novel DHP derivatives were obtained from a single key 3-hydroxycarbonyl DHP derivative, and they comprise a series of necessary tools for the study and isolation of membrane calcium channels.  相似文献   

14.
Three rumen fistulated Karan Fries crossbred (Holstein X Tharparkar) calves were fed increasing dry matter (DM) levels of 25%, 50%, 75% and 100% through leucaena leaf meal (LLM) starting at week 1, 2, 3 and 4, respectively. The mimosine, 3,4 DHP and 2,3 DHP levels were determined in strained rumen liquor (SRL) and serum at 0, 1, 2, 4, 8, 12 and 24 h postfeeding on days 1, 8, 15, 22, 29 and 42. LLM was incubated for 24 h with SRL in vitro on days 0, 7, 14, 21, 28 and 41 to study mimosine and dihydroxypyridone (DHP) biodegradation. On day 43, 1–1.5 l of rumen liquor was transferred to another set of three unadapted calves which were fed 50% LLM after transfer of inoculum. DM intake was 1.78%, 2.13%, 2.27%, 1.66%, 1.54% and 1.35% of live weight during the 1st through 5th week, respectively. Both in vitro and in vivo studies showed extensive degradation of mimosine to 3,4 DHP and 2,3 DHP from first day of LLM feeding. The overall in vitro DHP degradation was nil, 28.6%, 43.3% and 40.1% on day upto 15, 21, 28 and 42 of LLM feeding. No mimosine was found in serum on any day of sampling. The 3,4 DHP detected (56.94±31.65 μg ml−1 serum) one hour post feeding on day 1 exhibited a decline from day 22 onwards. The serum also contained 2,3 DHP on days 8, 15, 22, 42. The faecal and urinary excretion of 3,4 DHP and 2,3 DHP as percent of mimosine intake declined from first week (76.3±2.8) to 4th week (42.1±4.1). The feeding of LLM resulted in reduced level of T3 and T4 within a week of LLM feeding. The level of T3 improved to normal by 6th week while that of T4 remained low. The SGOT and SGPT activities were within normal range. The gradual adaptation to LLM feeding caused Karan Fries calves to acquire DHP degrading ability to nontoxic compounds and this ability was transferred through transfer of rumen liquor from such calves to other unadapted calves at as early as 9th day of LLM feeding. The results revealed the possibility of two types of microbes degrading mimosine and 3,4 DHP to 2,3 DHP. One type of 2,3 DHP degrading microbes may be inhibited in the presence of 3,4 DHP whereas the other type may be active.  相似文献   

15.
A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid or water-soluble fractions of DHP or of dioxane lignin from wheat was demonstrated. It is shown that a dissociation of DHP takes place during incubation in the absence of the bacteria which is reflected in a shift of DHP to lower molecular weight fractions. Bacterial degradation of [14C] DHP results in the release of 14CO2 and in the incorporation of the 14C-label into the biomass of the bacteria, as shown by chemical and biological methods.Abbreviations Bq Becquerel, measure for radioactivity according to SI nomenclature - DHP dehydropolymers of coniferyl alcohol - DMF dimethylformamide - DMSO dimethyl sulfoxide - HPLC high performance liquid chromatography - TCA trichloroacetic acid - THF tetrahydrofuran  相似文献   

16.
We have investigated a) the effects of the dihydropyridines (DHPs) nifedipine and nimodipine on depolarization-induced (T-tubule-mediated) Ca2+ release in the vesicles consisting of the complex of the T-tubule and SR, and b) the binding of [3H]nimodipine to these vesicles. These DHPs inhibited the slow but not the fast phase of depolarization-induced release, both of which are mediated via the T-tubule. The DHPs have no effect on caffeine-induced release in which T-tubules are not involved. There are two classes of DHP binding sites: one, with high affinity and small capacity, and another, exhibiting low affinity and a much larger capacity. The inhibition paralleled the low affinity binding of DHP with no correlation with the high affinity binding. These results suggest that the low affinity DHP binding sites located probably in the DHP receptor, rather than the high affinity DHP binding site, are responsible for the inhibition of e-c coupling.  相似文献   

17.
The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5alpha-dihydroprogesterone (DHP) by the enzyme 5alpha-reductase. DHP is subsequently reduced to 3alpha,5alpha-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3alpha-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5alpha-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3alpha-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone.  相似文献   

18.
Prior observations have raised the possibility that dihydropyridine (DHP) agonists directly affect the sarcoplasmic reticulum (SR) cardiac Ca(2+) release channel [i.e., ryanodine receptor (RyR)]. In single-channel recordings of purified canine cardiac RyR, both DHP agonists (-)-BAY K 8644 and (+)-SDZ202-791 increased the open probability of the RyR when added to the cytoplasmic face of the channel. Importantly, the DHP antagonists nifedipine and (-)-SDZ202-791 had no competitive blocking effects either alone or after channel activation with agonist. Thus there is a stereospecific effect of SDZ202-791, such that the agonist activates the channel, whereas the antagonist has little effect on channel activity. Further experiments showed that DHP agonists changed RyR activation by suppressing Ca(2+)-induced inactivation of the channel. We concluded that DHP agonists can also influence RyR single-channel activity directly at a unique allosteric site located on the cytoplasmic face of the channel. Similar results were obtained in human purified cardiac RyR. An implication of these data is that RyR activation by DHP agonists is likely to cause a loss of Ca(2+) from the SR and to contribute to the negative inotropic effects of these agents reported by other investigators. Our results support this notion that the negative inotropic effects of DHP agonists result in part from direct alteration in the activity of RyRs.  相似文献   

19.
The polysaccharides of the Chinese herbal medicine Dendrobium huoshanense exhibit anti-inflammatory effects in multiple organs through regulating the immune responses. In the present study, we constructed ulcerative colitis (UC) model rats using dextran sulfate sodium to investigate the anti-inflammatory effects of D. huoshanense polysaccharides (DHP). After oral administration of DHP for two weeks, the indices of UC symptoms, including the ratio of colon weight to length, Disease Activity Index (DAI), and Colon Mucosal Damage Index (CMDI), all decreased significantly compared with the UC model group. The histological sections also revealed better cell orders in DHP treatments than in the UC model rats. Moreover, in treatment with high dose of DHP (200 mg/kg), the treatment efficacy arrived the similar levels to those in the treatment with 300 mg/kg sulfasalazine, which is a typical medicine to treat UC. These results indicated that DHP has a high efficacy to treat UC in model rats. Furthermore, serum levels of interleukin-1β, tumor necrosis factor-α, interleukin-17, and transforming growth factor-β were assessed using the enzyme linked immunosorbent assay (ELISA) method, and the levels of nuclear factor-κB in colon tissue sections were determined using the immunohistochemical method. The results showed that all these indices decreased significantly after administration of DHP in UC model rats, which might be the mechanisms underlying the DHP-suppressed UC inflammation. Overall, this study indicated that DHP might be directly used to treat UC and is a promising source to develop novel drugs against UC.  相似文献   

20.
The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号