首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
A genomic cosmid library was constructed from a Chinese hamster/human hybrid cell containing human intact chromosome 22 as its only human component. Of 1000 cosmids with inserts derived from human chromosome 22, 191 were tested for restriction fragment length polymorphisms (RFLPs). As a result, 64 clones detected RFLPs, including five variable number of tandem repeats systems. Of the remaining 127 cosmids, 111 detected a single copy sequence on human chromosome 22. Five somatic cell hybrids allowed us to assign all of the 64 polymorphic cosmids and 44 non-polymorphic cosmids to four different regions of human chromosome 22. In two patients with DiGeorge syndrome, one of the cosmids that had been sublocalized to 22pter-q11 detected hemizygosity. These 108 cosmid markers regionally assigned to human chromosome 22 should be useful for the construction of long-range physical maps and the identification of genetic alterations on the chromosome.  相似文献   

3.
B Ida  M Pierluigi  S Lucia  P Piergiorgio 《Genomics》1992,13(4):1353-1355
The assembly of a large physical map of genomes requires simultaneous analysis of many cosmid clones for overlapping regions. The search for overlapping regions may be achieved by various means. High-performance liquid chromatography (HPLC) provides an alternative to gel electrophoresis since microgram amounts of each DNA fragment may be collected into individual test tubes for further analysis. HPLC has been used to identify overlapping cosmid clones from a pool of cosmid DNA containing the terminal portion of the long arm of the human X chromosome (Xq24-qter). Among 400 cosmids analyzed, 3 were shown to overlap.  相似文献   

4.
Molecular probes that contain DNA flanking CpG-rich restriction sites are extremely valuable in the construction of physical maps of chromosomes and in the identification of genes associated with hypomethylated HTF (HpaII tiny fragment) islands. We describe a new approach to the isolation and characterization of linking clones in arrayed chromosome-specific cosmid libraries through the large-scale semiautomated restriction mapping of cosmid clones. We utilized a cosmid library representing human chromosome 11q12-11qter and carried out automated restriction enzyme analysis, followed by regional localization to chromosome 11q using high-resolution in situ suppression hybridization. Using this approach, 165 cosmid linking clones containing one or more NotI, BssHII, SfiI, or SacII sites were identified among 960 chromosome-specific cosmids. Furthermore, this analysis allowed clones containing a single site to be distinguished from those containing clusters of two or more rare sites. This analysis demonstrated that more than 75% of cosmids containing a rare restriction site also contained a second rare restriction site, suggesting a high degree of CpG-rich restriction site clustering. Thirty chromosome 11q-specific cosmids containing rare CpG-rich restriction sites were regionally localized by high-resolution fluorescence in situ suppression hybridization, demonstrating that all of the CpG-rich sites detected by this method were located in bands 11q13 and 11q23. In addition, the distribution of (CA)n repetitive sequences was determined by hybridization of the arrayed cosmid library with oligonucleotide probes, confirming a random distribution of microsatellites among CpG-rich cosmid clones. This set of reagent cosmid clones will be useful for physical linking of large restriction fragments detected by pulsed-field gel electrophoresis and will provide a new and highly efficient approach to the construction of a physical map of human chromosome 11q.  相似文献   

5.
Cosmid libraries have been constructed from DNA of somatic cell hybrid cell lines, each containing a fragment of human chromosome seven and including sequences closely linked to cystic fibrosis (CF). Cosmids containing human DNA as insert were isolated from the library. Three cosmids, when used as probes to total genomic DNA, detected polymorphic loci, each of which was shown to be in strong linkage disequilibrium with CF. Restriction endonuclease digestion of cosmid clones and use of a new, rapid method of chromosome walking based on competitive hybridisation of cosmid inserts has allowed identification of several groups of overlapping cosmids ("contigs") from the vicinity of CF.  相似文献   

6.
The carcinoembryonic antigen (CEA)-like genes are members of a large gene family which is part of the immunoglobulin superfamily. The CEA family is divided into two major subgroups, the CEA-subgroup and the pregnancy-specific glycoprotein (PSG)-subgroup. In the course of an effort to develop a set of overlapping cosmids spanning human chromosome 19, we identified 245 cosmids in a human chromosome 19 cosmid library (6-7X redundant) by hybridization with an IgC-like domain fragment of the CEA gene. A fluorescence-based restriction enzyme digest fingerprinting strategy was used to assemble 212 probe-positive cosmids, along with 115 additional cosmids from a collection of approximately 8,000 randomly selected cosmids, into five contigs. Two of the contigs contain CEA-subgroup genes while the remaining three contigs contain PSG-subgroup genes. These five contigs range in size from 100 kb to over 300 kb and span an estimated 1 Mb. The CEA-like gene family was determined by fluorescence in situ hybridization to map in the q13.1-q13.2 region of human chromosome 19. Analysis of the two CEA-subgroup contigs provided verification of the contig assembly strategy and insight into the organization of 9 CEA-subgroup genes.  相似文献   

7.
8.
T. Ebersole  F. Lai    K. Artzt 《Genetics》1992,131(1):175-182
Many mutations affecting mouse development have been mapped to the t-complex of mouse chromosome 17. We have obtained 17 cosmid clones as molecular markers for this region by screening a hamster-mouse chromosome 17 and 18 cell hybrid cosmid library with mouse-specific repetitive elements and mapping positive clones via t-haplotype vs. C3H restriction fragment length polymorphism (RFLP) analysis. Twelve of the clones mapping distal to Leh66B in t-haplotypes are described here. Using standard RFLP analysis or simple sequence length polymorphism between t-haplotypes, exceptional partial t-haplotypes and nested sets of inter-t-haplotype recombinants, five cosmids have been mapped in or around In(17)3 and seven in the most distal inversion In17(4). More precise mapping of four of the cosmids from In(17)4 shows that they will be useful in the molecular identification of some of the recessive lethals mapped to the t-complex: two cosmids map between H-2K and Crya-1, setting a distal limit in t-haplotypes for the position of the tw5 lethal, one is inseparable from the tw12 lethal, and one maps distal to tf near the t0(t6) lethal and cld.  相似文献   

9.
The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

10.
We have constructed and characterized two related human chromosome 12-specific cosmid libraries. DNA from flow-sorted chromosomes from a somatic cell hybrid was cloned into a cosmid vector. Approximately 61% of the cosmids in the nearly 26,200 member arrayed libraries (LLt2NC01 and LLt2NC02) contain human DNA inserts, and 31% of the cosmids derived from human DNA contain CA repeats. One hundred and fifty-two cosmids isolated from the libraries have been mapped by fluorescence in situ hybridization (FISH). Cosmids containing human DNA inserts were localized by FISH exclusively to chromosome 12, confirming the chromosomal specificity of the libraries. The cosmids have been localized to all parts of this chromosome, although some regions are more highly represented than others. Partial sequence information was obtained from 44 mapped cosmids, and oligonucleotide primer pairs were synthesized that define unique sequence tagged sites (STSs). These mapped cosmids, and unique STSs derived from them, provide a set of useful clones and primer pairs for screening YAC libraries and developing contigs centered on regions of interest within chromosome 12. In addition, 120 of the mapped cosmids contain CA repeats, and thus they also provide a useful resource for defining highly polymorphic simple tandem repeat elements that serve as genetic markers for linkage analysis and disease gene localization.  相似文献   

11.
Physical map of the genome of Rhodobacter capsulatus SB 1003.   总被引:4,自引:0,他引:4       下载免费PDF全文
A map of the chromosome of Rhodobacter capsulatus was constructed by overlapping the large restriction fragments generated by endonucleases AseI and XbaI. The analyses were done by hybridization of single fragments with the restriction fragments blotted from pulsed-field gels and by grouping cosmids of a genomic library of R. capsulatus into contigs, corresponding to the restriction fragments, and further overlapping of the contigs. A technical difficulty due to a repeated sequence made it necessary to use hybridization with cloned genes and prior knowledge of the genetic map in order to close the physical circle in a unique way. In all, 41 restriction sites were mapped on the 3.6-Mb circular genome and 22 genes were positioned at 26 loci of the map. Cosmid clones were grouped in about 80 subcontigs, forming two groups, one corresponding to the chromosome of R. capsulatus and the other corresponding to a 134-kb plasmid. cos site end labeling and partial digestion of cosmids were used to construct a high-resolution EcoRV map of the 134-kb plasmid. The same method can be extended to the entire chromosome. The cosmid clones derived in this work can be used as a hybridization panel for the physical mapping of new genes as soon as they are cloned.  相似文献   

12.
A total of 5700 human chromosome 3-specific cosmid clones was isolated from a series of cosmid libraries constructed from somatic cell hybrids whose only human component was an entire chromosome 3 or a chromosome 3 containing an interstitial deletion removing 50% of long arm sequences. Several unique sequence chromosome 3-specific hybridization probes were isolated from each of 616 of these cosmids. These probes were then used to localize the cosmids by hybridization to a somatic cell hybrid deletion mapping panel capable of resolving chromosome 3 into nine distinct subregions. All 616 of the cosmids were localized to either the long or short arm of chromosome 3 and 63% of the short arm cosmids were more precisely localized. We have identified a total of 87 cosmids that contain fragments that are evolutionarily conserved. Fragments from these cosmids should prove useful in the identification of new chromosome 3-specific genes as well as in comparative mapping studies. The localized cosmids should provide excellent saturation of human chromosome 3 and facilitate the construction of physical and genetic linkage maps to identify various disease loci including Von Hippel Lindau disease and renal and small cell lung carcinoma.  相似文献   

13.
Summary A cosmid library has been prepared in the lorist-B vector from a mouse/human somatic cell hybrid containing region 11q23-11pter as the only human component. This chromosome region is stably maintained in the hybrid as a result of translocation onto one copy of mouse chromosome 13. Individual cosmids containing human DNA were isolated by their ability to hybridise with total human DNA, digested with either HindIII or EcoRI, and 33 individual unique sequences were identified. These fragments were then isolated and subcloned into the bluescribe plasmid vector. Regional localisation of these unique sequences was achieved using a panel of somatic cell hybrids containing different overlapping deletions of chromosome 11. The majority of the 33 mapped sequences derived from the long arm of chromosome 11. Two clones were located within the 11p13–p14 region, which is associated with a predisposition to Wilms' tumour. These probes supplement those already mapped to this chromosome and will assist in the generation of a detailed chromosome 11 linkage map.  相似文献   

14.
Clones containing sequences derived from the human Y chromosome have been isolated from cosmid libraries of a human-mouse hybrid cell line. These libraries were constructed in the new expression vectors Homer V and Homer VI. The collection of cosmids isolated is enriched for unique sequence DNA and only a few of the cosmids contain the tandemly repeated sequences which constitute a major portion of the Y chromosome. Three cosmids have been studied in detail. One cosmid shows extensive homology over at least 20 kb with the long arm of the X chromosome; this homology is outside the predicted homology region required for sex chromosome pairing. The other two clones contain unique sequences specific to the Y chromosome and both map to the heterochromatic region of the Y chromosome long arm.  相似文献   

15.
We have isolated large numbers of human recombinants from a cosmid library constructed from an interspecific (hamster/human) somatic cell hybrid whose only human component is an intact chromosome 3. Unique sequence probes were isolated from these recombinants and were used to localize them along the length of chromosome 3 by hybridization to a somatic cell hybrid deletion panel. We identified two cosmids, cA84 (D3S92) and cA199 (D3S93), derived from within chromosomal band 3p21.1. Both cosmids contained multiple rare restriction sites that were tightly clustered within the cosmids. We have therefore identified, in a region consistently deleted in a variety of lung cancers, two cosmids that may contain genes that are candidates for involvement in lung cancer.  相似文献   

16.
The complete human nucleotide excision repair gene FRCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

17.
We describe progress in a continuing project aimed at the generation of an overlapping cosmid DNA clone map of the short arm of human chromosome 11. The automated procedures used to prepare DNA samples and the computerized data collection and recording systems are described. We also demonstrate the use of the clones as reagents for the rapid isolation of genomic DNAs containing smaller probed regions. We have isolated approximately 4700 human cosmid DNA clones from mouse/human hybrid cell lines that contain predominantly human chromosomal region 11p. Of the DNA in the cell lines, 60% is derived from this chromosomal region, and the remaining 40% is derived from regions of chromosomes 3, 19, and 20. A total of 4159 clones have been fingerprinted to identify potential overlaps, and we have developed 535 sets ("contigs"). Using random modeling, it is estimated that 65% of 11p must be contained in the analyzed cosmids. The database of clones has been used to identify single or overlapping clones from noncosmid DNA probes. Examples are presented. It is proposed that cosmid reference filters be distributed to requesting laboratories.  相似文献   

18.
We have developed an efficient screening method to search for clones in cosmid libraries prepared from human genomic DNA. Genomic, cDNA, and cosmid probes have been used to isolate homologous cosmids from human chromosomes 7, 10, 16, 17 and X as part of a search for polymorphic nucleotide sequences. This method has been successfully applied to chromosome walking experiments at the interstitial retinol-binding protein locus on chromosome 10, and may be a useful tool for investigating representation of cloned sequences in cosmid libraries. Our library was prepared in the vector c2RB (Bates and Swift, 1983), but the method is applicable to any cosmid cloning system in which the inserted DNA can be separated from the vector by restriction enzyme digestion. A cosmid library containing five human genome equivalents can be rapidly screened using three to four Southern hybridization filters. This results in substantial labor saving, particularly when screening genomes of high complexity with many different probes. Another advantage of the system is that it allows for the long-term storage of the cosmids so that they can be screened whenever necessary. As a consequence, cosmid screening can be made a routine laboratory procedure.  相似文献   

19.
To better map the location of the von Recklinghausen neurofibromatosis (NF1) gene, we have characterized a somatic cell hybrid designated 7AE-11. This microcell-mediated, chromosome-transfer construct harbors a centromeric segment and a neo-marked segment from the distal long arm of human chromosome 17. We have identified 269 cosmid clones with human sequences from a 7AE-11 library and, using a panel of somatic cell hybrids with a total of six chromosome 17q breakpoints, have mapped 240 of these clones on chromosome 17q. The panel included a hybrid (NF13) carrying a der(22) chromosome that was isolated from an NF1 patient with a balanced translocation, t(17;22) (q11.2;q11.2). Fifty-three of the cosmids map into a region spanning the NF13 breakpoint, as defined by the two closest flanking breakpoints (17q11.2 and 17q11.2-q12). RFLP clones from a subset of these cosmids have been mapped by linkage analysis in normal reference families, to localize the NF1 gene more precisely and to enhance the potential for genetic diagnosis of this disorder. The cosmids in the NF1 region will be an important resource for testing DNA blots of large-fragment restriction-enzyme digests from NF1 patient cell lines, to detect rearrangements in patients' DNA and to identify the 17;22 NF1 translocation breakpoint.  相似文献   

20.
A rapid method to identify cosmids containing rare restriction sites.   总被引:2,自引:1,他引:1  
A procedure for identifying specific cosmid clones containing recognition sites for "rare cutting" restriction enzymes has been developed. Cosmid clones containing human inserts were selected by hybridisation to human repetitive DNA. An oligonucleotide corresponding to the NotI recognition site, eight bases long, was labelled and used to probe DNA samples from one hundred cosmids. By optimising the difference in melting characteristics between eight-base perfect match and six-base match/two base mismatch hybrids, we were able to detect the cosmids containing either NotI (8 bp match) or XmaIII/EagI (6 bp match) sites. The generation of a map for rare cutter sites along a human chromosome, or a chromosome region, should be simplified using this approach, which will enable the identification of a set of "milestones" at intervals of several hundred kilobases (kb) along the DNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号