首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G L Orr  J W Gole  H J Notman  R G Downer 《Life sciences》1987,41(25):2705-2715
Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 microM and at 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 microM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 microM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D2-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 microM. Other dopamine agonists (apomorphine, SKF-82526, SKF-38393) have no stimulatory effects. The octopamine-sensitive AC is inhibited by a variety of antagonists known to affect octopamine and dopamine receptors, with the following order of potency: mianserin greater than phentolamine greater than cyproheptadine greater than piflutixol greater than cis-flupentixol greater than SCH-23390 greater than (+)-butaclamol greater than SKF-83566 greater than SCH-23388 greater than sulpiride greater than spiperone greater than haloperidol. The dopamine-sensitive AC is inhibited by the same compounds with the following order of potency: piflutixol greater than cis-flupentixol greater than (+)-butaclamol greater than spiperone greater than or equal to SCH-23390 greater than cyproheptadine greater than SKF-83566 greater than SCH 23388 greater than mianserin greater than phentolamine greater than sulpiride greater than haloperidol. With the exception of mianserin, 3H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D1- and D2-dopamine receptors.  相似文献   

2.
Drosophila Schneider 2 (S2) cells are often employed as host cells for non-lytic, stable expression and functional characterization of mammalian and insect G-protein-coupled receptors (GPCRs), such as biogenic amine receptors. In order to avoid cross-reactions, it is extremely important to know which endogenous receptors are already present in the non-transfected S2 cells. Therefore, we analyzed cellular levels of cyclic AMP and Ca2+, important second messengers for intracellular signal transduction via GPCRs, in response to a variety of naturally occurring biogenic amines, such as octopamine, tyramine, serotonin, histamine, dopamine and melatonin. None of these amines (up to 0.1 mM) was able to reduce forskolin-stimulated cyclic AMP production in S2 cells. Furthermore, no agonist-induced calcium responses were observed. Nevertheless, the phenolamines octopamine (OA) and tyramine (TA) induced a dose-dependent increase of cyclic adenosine monophosphate (AMP) production in S2 cells, while serotonin, histamine, dopamine and melatonin (up to 0.1 mM) did not. The pharmacology of this response was similar to that of the octopamine-2 (OA2) receptor type. In addition, this paper provides evidence for the presence of an endogenous mRNA encoding an octopamine receptor type in these cells, which is identical or very similar to OAMB. This receptor was previously shown to be positively coupled to adenylyl cyclase.  相似文献   

3.
The presence of protein kinase C (EC 2.7.1.37) in an insect cell line has been demonstrated. Phorbol 12-myristate 13-acetate (PMA), in micromolar concentrations, activated protein kinase C with a translocation of the enzyme from the cytosol to the particulate fraction. Cyclic AMP production in the presence of PMA, octopamine and a combination of both increased in a dose-dependent and time-dependent fashion. The biologically inactive 4 alpha-phorbol 12,13-didecanoate had no effect on protein kinase C activity or on octopamine-mediated cyclic AMP production. Pretreatment of the cells with pertussis toxin had no effect on the response of cells to octopamine or PMA. However, pretreatment with cholera toxin resulted in increased cyclic AMP production which was further enhanced when both cholera toxin and PMA were used in combination. Our data indicate that the octopamine-mediated cyclic AMP production is modulated by protein kinase C.  相似文献   

4.
《Insect Biochemistry》1990,20(3):239-244
The octopamine-sensitive adenylate cyclase associated with haemocytes of the American cockroach, Periplaneta americana, has been used as a model system with which to study desensitization of the octopamine receptor. Preincubation of the haemocytes with octopamine results in a large decrease in subsequent maximal stimulation of cyclic AMP production by octopamine with little change in affinity of the receptor for the agonist. This effect of preincubation is dependent upon the concentration of octopamine in the preincubation media and on the duration of exposure. The attenuation appears to be a receptor-mediated event rather than an artifact of the preincubation. Octopamine receptor agonists (octopamine, synephrine, N-demethylchlordimeform) induce desensitization while biogenic amines with poor octopamine receptor affinity (dopamine, serotonin, norepinephrine) are without affect. In contrast, the octopamine receptor antagonist, phentolamine, appears to enhance subsequent stimulation by octopamine. The attenuation of octopamine stimulation of adenylate cyclase is conserved in broken-cell preparations with no alteration of responses to NaF or forskolin. Incubation of the cells with dibutyryl cyclic AMP or forskolin does not induce desensitization. The data indicate that the OA receptors coupled to AC in cockroach haemocytes undergo an homologous desensitization in response to exposure to agonists.  相似文献   

5.
Incubation of corpora cardiaca from adult male Periplaneta americana in the presence of octopamine results in elevated tissue levels of cyclic AMP. The octopamine-induced elevation of cyclic AMP is partially blocked by phentolamine, gramine and cyproheptadine but not by propranolol. Dopamine and 5-hydroxytryptamine also increase cyclic AMP levels in the corpus cardiacum and additivity studies indicate that separate octopamine- and dopamine-binding sites are present within the tissue. Cyclic AMP levels in the corpus cardiacum also increase in response to electrical stimulation of nervi corporis cardiaci II (NCC II) and the electrically induced effect is eliminated in the presence of phentolamine.A factor, which causes elevated haemolymph trehalose levels when injected into adult cockroaches, is released from corpora cardiaca incubated in the presence of octopamine. The active factor is denatured by incubation in the presence of pronase. The hypertrehalosemic factor is also released when corpora cardiaca are incubated in the presence of dibutyryl cyclic AMP or 40 mM potassium chloride; however dopamine and 5-hydroxytryptamine fail to effect a marked release of the hypertrehalosemic factor.The results are discussed in light of the proposal that the release of hypertrehalosemic hormone from corpora cardiaca is regulated by octopaminergic neurones contained within NCC II.  相似文献   

6.
Dopamine and 2-chloroadenosine independently promoted the accumulation of cyclic AMP in retinas from 16-day-old chick embryos. The two compounds added together either in saturating or subsaturating concentrations were not additive for the accumulation of the cyclic nucleotide in the tissue. This fact was shown to be due to the existence of an adenosine receptor that mediates the inhibition of the dopamine-dependent cyclic AMP accumulation in the retina. Adenosine inhibited, in a dose-dependent fashion, the accumulation of cyclic AMP induced by dopamine in 12-day-old chick embryo retinas, with an IC50 of approximately 1 microM. This effect was not blocked by dipyridamole. N6-(l-Phenylisopropyl)adenosine, (l-PIA) was the most potent adenosine analog tested, showing an IC50 of 0.1 microM which was two orders of magnitude lower than its stereoisomer d-PIA (10 microM). The maximal inhibition of the dopamine-elicited cyclic AMP accumulation by adenosine and related analogs was 70%. The inhibitory effect promoted by adenosine was blocked by 3-isobutyl-1-methylxanthine (IBMX) or by adenosine deaminase. Adenine was not effective; whereas ATP and AMP promoted the inhibition of the dopamine effect only at very high concentrations. Apomorphine was only 30% as effective as dopamine in promoting the cyclic AMP accumulation in retinas from 11- to 12-day-old embryos and 2-chloroadenosine did not interfere with the apomorphine-mediated shift in cyclic AMP levels. In the retinas from 5-day-old posthatched chickens dopamine and apomorphine were equally effective in eliciting the accumulation of cyclic AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
M Schorderet 《Life sciences》1977,20(10):1741-1747
Exposure of intact retinae of rabbit to dopamine, epinephrine and norepinephrine led to dose-related accumulations of cyclic AMP. Dopamine appears to be more potent than the two other catecholamines, since at 10?6M it still induced a significant increase in cyclic AMP, whereas the two latter drugs were ineffective. Pure α- or β-adrenergic agonists such as phenylephrine or isoproterenol, as well as other drugs such as clonidine, DPI, (+)- and (±)-amphetamine, used at 10?4M, were also devoid of agonist activity. In contrast a dopamine-analogue (epinine) and a dopamine-like drug (apomorphine) were as potent as dopamine. Blockade of the dopamine- or norepinephrine-elicited accumulation of cyclic AMP was achieved by antipsychotics such as fluphenazine, (+)-butaclamol and lithium, whereas propranolol (a β-adrenergic antagonist), phentolamine (an α-adrenergic antagonist) and (?)-butaclamol (an inactive compound), at 10?4 to 5 × 10?4M concentrations, showed no antagonist activity. The results indicate that the cyclic AMP production induced by catecholamines in intact retina of rabbit is a result of an activation of relatively pure dopamine receptors.  相似文献   

8.
Forskolin (7 beta-acetoxy-8, 13-epoxy-1 alpha,6 beta,9 alpha-trihydroxy-labd-14-ene-11-one) induced both cyclic AMP production and lipolysis in intact fat cells, but stimulated lipolysis without increasing cyclic AMP at a concentration of 10(-5) M. Homogenization of fat cells elicited lipolysis without elevation of cyclic AMP. Forskolin did not stimulate lipolysis in the homogenate. Forskolin stimulated both cyclic AMP production and lipolysis in a cell-free system consisting of endogenous lipid droplets and a lipoprotein lipase-free lipase fraction prepared from fat cells. However, at a concentration of 10(-6) M, it induced lipolysis without increase in the cyclic AMP content in this cell-free system. In the cell-free system, homogenization of the lipid droplets resulted in marked increase in lipolysis to almost the same level as that with 10(-4) M forskolin without concomitant increase in cyclic AMP. Addition of forskolin to a cell-free system consisting of homogenized lipid droplets and lipase did not stimulate lipolysis further. Phosphodiesterase activities were found to be almost the same both in the presence and absence of forskolin in these reaction mixtures. Although 10(-3) M forskolin produced maximal concentrations of cyclic AMP: 6.7 x 10(-7) M in fat cells and 2.7 x 10(-7) M in the cell-free system, 10(-4) M cyclic AMP did not stimulate lipolysis in the cell-free system. In a cell-free system consisting of lipid droplets and the lipase, pyrophosphate inhibited forskolin-induced cyclic AMP production, but decreased forskolin-mediated lipolysis only slightly. Based on these results, mechanism of lipolytic action of forskolin was discussed.  相似文献   

9.
Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP response element binding protein in the cholinergic SIA neurons. In contrast, dopamine is released from dopaminergic neurons only in the presence of food. Here, we show that dopamine suppresses octopamine signalling through two D2‐like dopamine receptors and the G protein Gi/o. The D2‐like receptors work in both the octopaminergic neurons and the octopamine‐responding SIA neurons, suggesting that dopamine suppresses octopamine release as well as octopamine‐mediated downstream signalling. Our results show that C. elegans detects the absence of food by using a small neural circuit composed of three neuron types in which octopaminergic signalling is activated by the cessation of dopamine signalling.  相似文献   

10.
Insect octopamine receptors carry out many functional roles traditionally associated with vertebrate adrenergic receptors. These include control of carbohydrate metabolism, modulation of muscular tension, modulation of sensory inputs and modulation of memory and learning. The activation of octopamine receptors mediating many of these actions leads to increases in the levels of cyclic AMP. However, to date none of the insect octopamine receptors that have been cloned have been convincingly shown to be capable of directly mediating selective and significant increases in cyclic AMP levels. Here we report on the identification and characterization of a novel, neuronally expressed family of three Drosophila G-protein coupled receptors that are selectively coupled to increases in intracellular cyclic AMP levels by octopamine. This group of receptors, DmOct beta1R (CG6919), DmOct beta2R (CG6989) and DmOct beta3R (CG7078) shows homology to vertebrate beta-adrenergic receptors. When expressed in Chinese hamster ovary cells all three receptors show a strong preference for octopamine over tyramine for the accumulation of cyclic AMP but show unique pharmacological profiles when tested with a range of synthetic agonists and antagonists. Thus, the pharmacological profile of individual insect tissue responses to octopamine might vary with the combination and the degree of expression of the individual octopamine receptors present.  相似文献   

11.
Adenosine 3',5'-cyclic monophosphate (cyclic AMP) and its 8-methylthio derivative stimulate the incorporation of 32P into proteins endogenous to a homogenate of rat caudate nucleus when 4 micrometer [gamma-32P] ATP is used as substrate. Higher concentrations of ATP reduced the effect of the cyclic nucleotide until at 400 micrometer no significant increase in protein phosphorylation was seen. Incubation of the homogenate with 400 micron ATP and 100 micron dopamine resulted in an approx. 2-fold increase in cyclic AMP but did not alter caudate protein phosphorylation suggesting that the catecholamine could not stimulate protein phosphorylation under the experimental conditions used in the present study.  相似文献   

12.
Visualization of the tyraminergic innervation of the oviducts was demonstrated by immunohistochemistry, and the presence of tyramine was confirmed using high-performance liquid chromatography coupled to electrochemical detection. Oviducts incubated in high-potassium saline released tyramine in a calcium-dependent manner. Stimulation of the oviducal nerves also resulted in tyramine release, suggesting that tyramine might function as a neurotransmitter/neuromodulator at the locust oviducts. Tyramine decreased the basal tension, and also attenuated proctolin-induced contractions in a dose-dependent manner over a range of doses between 10(-7) and 10(-4) M. Low concentrations of tyramine attenuated forskolin-stimulated cyclic AMP levels in a dose-dependent manner. This effect was not blocked by yohimbine. High concentrations of tyramine increased basal cyclic AMP levels of locust oviducts in a dose-dependent manner; however, the increases in cyclic AMP were only evident at the highest concentrations tested, 5 x 10(-5) and 10(-4) M tyramine. The tyramine-induced increase in cyclic AMP shared a similar pharmacological profile with the octopamine-induced increase in cyclic AMP. Tyramine increased the amplitude of excitatory junction potentials at low concentrations while hyperpolarizing the membrane potential by 2-5 mV. A further increase in the amplitude of the excitatory junction potentials and the occurrence of an active response was seen upon washing tyramine from the preparation. These results suggest that tyramine can activate at least three different endogenous receptors on the locust oviducts a putative tyramine receptor at low concentrations, a different tyramine receptor to inhibit muscle contraction, and an octopamine receptor at high concentrations.  相似文献   

13.
The effects of dopamine on pituitary prolactin secretion and pituitary cyclic AMP accumulation were studied by using anterior pituitary glands from adult female rats, incubated in vitro. During 2h incubations, significant inhibition of prolactin secretion was achieved at concentrations between 1 and 10nm-dopamine. However, 0.1–1μm-dopamine was required before a significant decrease in pituitary cyclic AMP content was observed. In the presence of 1μm-dopamine, pituitary cyclic AMP content decreased rapidly to reach about 75% of the control value within 20min and there was no further decrease for at least 2h. Incubation with the phosphodiesterase inhibitors theophylline (8mm) or isobutylmethylxanthine (2mm) increased pituitary cyclic AMP concentrations 3- and 6-fold respectively. Dopamine (1μm) had no effect on the cyclic AMP accumulation measured in the presence of theophylline, but inhibited the isobutylmethylxanthine-induced increase by 50%. The dopamine inhibition of prolactin secretion was not affected by either inhibitor. Two derivatives of cyclic AMP (dibutyryl cyclic AMP and 8-bromo cyclic AMP) were unable to block the dopamine (1μm) inhibition of prolactin secretion, although 8-bromo cyclic AMP (2mm) significantly stimulated prolactin secretion and both compounds increased somatotropin (growth hormone) release. Cholera toxin (3μg/ml for 4h) increased pituitary cyclic AMP concentrations 4–5-fold, but had no effect on prolactin secretion. The inhibition of prolactin secretion by dopamine was unaffected by cholera toxin, despite the fact that dopamine had no effect on the raised pituitary cyclic AMP concentration caused by this factor. Dopamine had no significant effect on either basal or stimulated somatotropin secretion under any of the conditions tested. We conclude that the inhibitory effects of dopamine on prolactin secretion are probably not mediated by lowering of cyclic AMP concentration, although modulation of the concentration of this nucleotide in some other circumstances may alter the secretion of the hormone.  相似文献   

14.
Because several groups have recently questioned a mediating role for cyclic AMP in adrenocortical steroidogenesis, we analysed the problem in more detail by measuring three different cyclic AMP pools in cells isolated from decapsulated rat adrenals. Extra-cellular, total intracellular and bound intracellular cyclic AMP were determined by radioimmunoassay in comparison with corticosterone production induced by low corticotropin concentrations. The increase in extracellular and total intracellular cyclic AMP with low corticotropin concentrations was dependent on the presence of a phosphodiesterase inhibitor and short incubation times. Bound intracellular cyclic AMP was less dependent on these two parameters. In unstimulated cells cyclic AMP bound to its receptor represents only a small fraction of the total intracellular cyclic AMP. After stimulation by a concentration of corticotropin around the threshold for corticosterone production, an increase in bound cyclic AMP was observed which correlated very well with steroidogenesis both temporally and with respect to corticotropin concentration. This finding was complemented by measuring a concomitant decrease in free receptor sites. Full occupancy of the receptors was not necessary for maximal steroidogenesis. Binding kinetics of cyclic [(3)H]AMP in concentrations equivalent to the intracellular cyclic AMP concentration suggest the presence of at least three different intracellular cyclic AMP pools. These observations are in agreement with a possible role for cyclic AMP as a mediator of acute steroidogenesis induced by low corticotropin concentrations.  相似文献   

15.
The effects of vasoactive intestinal peptide (VIP) and several other peptides have been examined on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost (carp) retina. VIP was the most effective peptide examined, inducing a dose-related response, and an approximately fivefold increase in cyclic AMP production when used at a concentration of 10 microM. Porcine histidine isoleucine-containing peptide and secretin, peptides structurally related to VIP, also stimulated cyclic AMP accumulation, but at concentrations of 10 microM induced responses which were only approximately 40% and 10%, respectively, of the response observed with 10 microM VIP. In contrast, several other peptides, including glucagon, neurotensin, somatostatin, luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone, cholecystokinin octapeptide26-33, gastrin-releasing peptide, thyrotropin-releasing hormone, and VIP10-28 were totally inactive. The response to 10 microM VIP was not antagonized by several dopamine antagonists, indicating the presence of a population of specific VIP receptors coupled to adenylate cyclase, distinct from the population of dopamine receptors coupled to adenylate cyclase also known to be present in this tissue. Finally, experiments involving the use of fractions of isolated horizontal cells indicate that these neurons possess a population of VIP receptors coupled to cyclic AMP production which would appear to share a common pool of adenylate cyclase with a population of similarly coupled dopamine receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and its 8-methylthio derivative stimulate the incorporation of 32P into proteins endogenous to a homogenate of rat caudate nucleus when 4 μM [γ?32P] ATP is usedas substrate. Higher concentrations of ATP reduced the effect of the cyclic nucleotide until at 400 μM no significant increase in protein phosphorylation was seen.Incubation of the homogenate with 400 μM ATP and 100 μM dopamine resulted in an approx. 2-fold increase in cyclic AMP but did not alter caudate protein phosphorylation suggesting that the catecholamine could not stimulate protein phosphorylation under the experimental conditions used in the present study.  相似文献   

17.
The effect of triethyltin (TET), triphenyltin (TPT), hexachlorophene (HCP) and cuprizone on adenosine cyclic 3',5'-monophosphate (cyclic AMP) production in rat brain was examined both in vitro and in vivo. TET and TPT inhibited basal adenylate cyclase activity of brain homogenate at a concentration as low as 1 microM in vitro but these compounds had no effect on norepinephrine (NE) and dopamine(DA)-stimluated enzyme activity. HCP and cuprizone failed to inhibit adenylate cyclase activity. In vivo TET given intravenously at a dose rate of 10 mg/kg decreased the cyclic AMP content of cerebrum, but not of medulla. TPT and HCP give intravenously and intraperitoneally respectively failed to decrease the cyclic AMP content of the cerebrum. In the case of TET the reduction in cyclic AMP content of the cerebrum was prevented by maintaining the rats normothermic after treatment. On the basis of these results the inhibition of adenylate cyclase produced by TET in brain homogenates in vitro would not appear to be involved in the development of nervous changes associated with acute TET toxicity, or in the production of progressive brain oedema caused by TET, HCP and cuprizone.  相似文献   

18.
1. The catecholamines dopamine, epinephrine and norepinephrine were detected in alumina extracts of Limulus midgut tissue using high performance liquid chromatography with electrochemical detection. Moderate levels of norepinephrine (28.2 +/- 2.1 ng/g) and dopamine (24.0 +/- 5.2 ng/g) were detected in the midgut, while epinephrine levels (7.4 +/- 0.9 ng/g) were less. Catecholamines were present in all regions along the longitudinal axis of the midgut, and norepinephrine and dopamine levels were highest in posterior regions. 2. Catecholamines decreased muscle tonus and inhibited spontaneous contractions of the Limulus midgut. Dopamine typically decreased spontaneous midgut activity at doses of 10(-8) M or greater, and produced inhibitory actions on all regions of the Limulus midgut. In some preparations epinephrine and norepinephrine elicited a secondary rhythmicity. The actions of dopamine opposed the excitatory effects produced by either proctolin or octopamine. 3. Catecholamines significantly elevated levels of cyclic AMP in Limulus midgut muscle rings. Dopamine (10(-5) M) increased cyclic AMP with a time course consistent with its physiological effects. Forskolin and several methyl xanthines increased Limulus midgut cyclic AMP levels and mimicked the inhibitory effects of dopamine on the isolated midgut preparation. Cyclic nucleotide analogues also produced dopamine-like effects on the isolated midgut preparation. Inhibition of cyclic nucleotide phosphodiesterase prior to addition of dopamine enhanced the effect of this amine to decrease baseline muscle tension. 4. The inhibitory effects of 10(-5) M dopamine on the midgut persisted in solutions of zero sodium and in the presence of tetrodotoxin. Zero calcium solutions gradually reduced spontaneous midgut activity and the effects of dopamine. Calcium channel blockers did not prohibit dopamine-induced relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
《Insect Biochemistry》1989,19(8):715-722
The interaction of several formamidine pesticides, chlordimeform (CDM), N-demethylchlordimeform (DCDM) and amitraz with octopamine receptor(s) and the resulting enhancement of cyclic-AMP (cAMP) production in vitro were investigated in the two-spotted spider mite, Tetranychus urticae Koch. DCDM and amitraz clearly stimulated the production of cAMP when added to a homogenate of the spider mite. Among various biogenic amines tested, octopamine and synephrine were most active but dopamine (DA) and 5-hydroxytroptamine showed only marginal potency to elevate cAMP production. An additivity study was devised to find whether these formamidines interact with the same target site as octopamine. The results indicate that all these chemicals act on the same receptor which functions to transduce the signal of certain biogenic amines to elevate the intracellular cAMP level. Phentolamine (PH) and propranolol (PR) showed an antagonistic effect against the portion of cAMP production which was elevated by DCDM. Among pesticides tested, deltamethrin, fenvalerate, DDT and benzenehexachloride showed no such effect, whereas dicofol, chlorobenzilate, parathion and aldicarb showed slight stimulatory effects on cAMP production. Both DCDM and octopamine cause an increase in the phosphorylation of proteins that are also phosphorylated by exogenous cAMP-dependent protein kinase. The results of pharmacological characterization studies confirmed the overall theory that the agonistic effects of formamidines are expressed primarily through the octopamine-sensitive adenylate cyclase.  相似文献   

20.
5-Hydroxytrptamine increased the rate of Ca2+ efflux and the concentration of endogenous cyclic AMP in abalone gill in both 10 mM and 50 mM CaCl2 concentrations externally. Dopamine decreased the rate of Ca2+ efflux in 50 mM CaCl2 but slightly increased the efflux rate in 10 mM CaCl2. At both external Ca2+ concentrations, dopamine increased the endogenous cyclic AMP concentration in the gill. 5-Hydroxytryptamine but not dopamine was found to activate adenylate cyclase in broken cell preparations of abalone gill. Cyclic AMP-dependent protein kinase activity was also demonstrated in homogenate fractions of abalone gill. It is suggested that both Ca2+ and cyclic AMP act as second messengers in the response of abalone gill to 5-hydroxytryptamine and dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号