首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary injury induced by the plant alkaloid monocrotaline is partially prevented by the angiotensin-converting enzyme (ACE) inhibitor captopril. CL242817 [(S-[R*,S*])-1-([3-acetylthio]-3-benzoyl-2-methyl-propionyl)- L-proline] is a new orally active ACE inhibitor under evaluation as an antihypertensive agent. To determine whether CL242817 also can modify monocrotaline-induced pulmonary injury, male rats were divided into four groups: control; CL242817 (60 mg/kg/day, po); monocrotaline (2.4 mg/kg/day, po); or monocrotaline plus CL242817, and were sacrificed after 6 weeks of continuous treatment. Rats receiving monocrotaline alone exhibited occlusive medial thickening of the pulmonary arteries, cardiomegaly, and right ventricular hypertrophy. Electron micrographs of monocrotaline-treated lung revealed degeneration of both endothelial and Type I epithelial cells, as well as marked interstitial hypercellularity and fibrosis. Hydroxyproline (collagen) content of monocrotaline-treated lung also increased significantly, confirming the fibrosis observed in the electron micrographs. These structural changes were accompanied by decreased lung ACE and plasminogen activator (PLA) activities, indicative of pulmonary endothelial dysfunction. Concomitant CL242817 treatment ameliorated all anatomic manifestations of monocrotaline injury, particularly the right ventricular hypertrophy, pulmonary arterial occlusion, epithelial degeneration, and interstitial fibrosis. CL242817 also significantly prevented the monocrotaline-induced increase in lung hydroxyproline content. In contrast, concomitant CL242817 did not significantly influence the suppressed lung ACE and PLA activities in monocrotaline-treated rats. CL242817 alone produced retarded weight gain, decreased heart weight relative to body weight, decreased lung hydroxyproline content and ACE activity, and increased serum ACE activity and plasma AII concentration. Thus CL242817 resembles captopril, both in its ability to ameliorate monocrotaline-induced pulmonary injury in rats, and in many of its side effects.  相似文献   

2.
Lung injury induced in rats by the pyrrolizidine alkaloid monocrotaline is a well-documented model of pulmonary hypertension. To our knowledge, however, monocrotaline-induced cardiopulmonary injury has rarely been described and has never been quantitated in mice. In the present study, adult male mice received 2.4, 4.8, or 24.0 mg monocrotaline/kg body weight/day in the drinking water continuously for 6 weeks. These doses represent 1, 2, and 10 times the severely pneumotoxic regimen in rats. Pulmonary endothelial function was monitored by right lung angiotensin converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Light and electron microscopy were performed on the left lungs. Cardiac right ventricular hypertrophy was evaluated by the right ventricle to left ventricle plus septum weight ratio (RV/LV + S). Monocrotaline-treated mice exhibited a dose-dependent decrease in lung ACE and PLA activities and an increase in PGI2 and TXA2 production, indicative of endothelial dysfunction. However, these responses were significant only after the highest monocrotaline dose. Light and electron microscopy revealed dose-dependent pulmonary inflammatory and exudative reactions. Unlike previous studies in rats, however, monocrotaline-treated mice developed relatively little lung fibrosis, cardiomegaly, or right ventricular hypertrophy, and no occlusive medial thickening of the pulmonary arteries, even at the highest dose level. These and previous data indicate that there are quantitative biochemical and qualitative morphological differences between mice and rats with respect to monocrotaline pneumotoxicity. Furthermore, in monocrotaline-treated mice (but not in rats) there appears to be a dissociation between lung endothelial dysfunction and inflammation on the one hand, and pulmonary hypertension and fibrosis on the other.  相似文献   

3.
Lung injury induced in rats by the pyrrolizidine alkaloid monocrotaline is a well-documented model of pulmonary hypertension. To our knowledge, however, monocrotaline-induced cardiopulmonary injury has rarely been described and has never been quantitated in mice. In the present study, adult male mice received 2.4, 4.8, or 24.0 mg monocrotaline/kg body weight/day in the drinking water continuously for 6 weeks. These doses represent 1, 2, and 10 times the severely pneumotoxic regimen in rats. Pulmonary endothelial function was monitored by right lung angiotensin converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Light and electron microscopy were performed on the left lungs. Cardiac right ventricular hypertrophy was evaluated by the right ventricle to left ventricle plus septum weight ratio (RV/LV + S). Monocrotalinetreated mice exhibited a dose-dependent decrease in lung ACE and PLA activities and an increase in PGI2 and TXA2 production, indicative of endothelial dysfunction. However, these responses were significant only after the highest monocrotaline dose. Light and electron microscopy revealed dosedependent pulmonary inflammatory and exudative reactions. Unlike previous studies in rats, however, monocrotaline-treated mice developed relatively little lung fibrosis, cardiomegaly, or right ventricular hypertrophy, and no occlusive medial thickening of the pulmonary arteries, even at the highest dose level. These and previous data indicate that there are quantitative biochemical and qualitative morphological differences between mice and rats with respect to monocrotaline pneumotoxicity. Furthermore, in monocrotaline-treated mice (but not in rats) there appears to be a dissociation between lung endothelial dysfunction and inflammation on the one hand, and pulmonary hypertension and fibrosis on the other.  相似文献   

4.
To determine whether D-penicillamine, known to reduce fibrosis in irradiated rat lung (W. F. Ward, A. Shih - Hoellwarth , and R. D. Tuttle , Radiology 146, 533-537, 1983), also ameliorates radiation injury in the pulmonary endothelium, we measured angiotensin-converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) production in the lungs of penicillamine-treated (10 mg/day, po, continuous after irradiation) and untreated rats from 2 weeks to 6 months after a single dose of 25 Gy of 60Co gamma rays to the right hemithorax. Both ACE and PLA activity in the irradiated right lung of untreated rats decreased dramatically between the 1st and 2nd months after exposure, then reached a plateau through 6 months at approximately 25 and 50% of the normal level, respectively. For the first 2 months after irradiation, penicillamine-treated animals exhibited significantly (P less than 0.05) higher activities of both ACE and PLA than did untreated rats. From 3 to 6 months after irradiation, however, the only significant drug effect on these enzymes was a 25% increase in PLA activity at 6 months. PGI2 production by the irradiated lung of untreated rats increased continuously, and at 6 months was approximately 10 times higher than normal. Penicillamine significantly (P less than 0.05) reduced this hypersecretion, and at 6 months after irradiation, PGI2 production by the lungs of drug-treated rats was only half that of untreated animals. In contrast, the drug had no significant effect on enzyme activities in the lungs of sham-irradiated rats. Thus the antifibrotic agent D-penicillamine delays the onset of radiation-induced enzyme dysfunction in the pulmonary endothelium. In addition at 6 months after irradiation, the lungs of penicillamine-treated rats exhibit 25% more PLA activity and only half as severe a hypersecretion of PGI2 as do the lungs of untreated animals. The drug is most effective in ameliorating endothelial damage during the first 2 months after irradiation, preceding the development of interstitial fibrosis. However, the effect of this penicillamine regimen on pulmonary endothelial function is not as large as its effect on collagen accumulation in irradiated rat lung.  相似文献   

5.
The administration of mesenchymal stem cells (MSCs) has been proposed for the treatment of pulmonary hypertension. However, the effect of intratracheally administered MSCs on the pulmonary vascular bed in monocrotaline-treated rats has not been determined. In the present study, the effect of intratracheal administration of rat MSCs (rMSCs) on monocrotaline-induced pulmonary hypertension and impaired endothelium-dependent responses were investigated in the rat. Intravenous injection of monocrotaline increased pulmonary arterial pressure and vascular resistance and decreased pulmonary vascular responses to acetylcholine without altering responses to sodium nitroprusside and without altering systemic responses to the vasodilator agents when responses were evaluated at 5 wk. The intratracheal injection of 3 x 10(6) rMSCs 2 wk after administration of monocrotaline attenuated the rise in pulmonary arterial pressure and pulmonary vascular resistance and restored pulmonary responses to acetylcholine toward values measured in control rats. Treatment with rMSCs decreased the right ventricular hypertrophy induced by monocrotaline. Immunohistochemical studies showed widespread distribution of lacZ-labeled rMSCs in lung parenchyma surrounding airways in monocrotaline-treated rats. Immunofluorescence studies revealed that transplanted rMSCs retained expression of von Willebrand factor and smooth muscle actin markers specific for endothelial and smooth muscle phenotypes. However, immunolabeled cells were not detected in the wall of pulmonary vessels. These data suggest that the decrease in pulmonary vascular resistance and improvement in response to acetylcholine an endothelium-dependent vasodilator in monocrotaline-treated rats may result from a paracrine effect of the transplanted rMSCs in lung parenchyma, which improves vascular endothelial function in the monocrotaline-injured lung.  相似文献   

6.
The purpose of this study was to evaluate the angiotensin converting enzyme (ACE) inhibitor CL242817 as a modifier of radiation-induced pulmonary endothelial dysfunction and pulmonary fibrosis in rats sacrificed 2 months after a single dose of 60Co gamma rays (0-30 Gy) to the right hemithorax. CL242817 was administered in the feed continuously after irradiation at a regimen of 60 mg/kg/day. Pulmonary endothelial function was monitored by lung ACE activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Pulmonary fibrosis was evaluated by lung hydroxyproline (HP) content. Lung ACE and PLA activities decreased with increasing radiation dose, and cotreatment with CL242817 significantly ameliorated both responses. CL242817 dose-reduction factors (DRF) were 1.3-1.5 for ACE and PLA activity. Lung PGI2 and TXA2 production increased with increasing radiation dose, and CL242817 almost completely prevented both radiation responses. The slope of the radiation dose-response curves in the CL242817-treated rats was essentially zero, precluding calculation of DRF values for PGI2 and TXA2 production. Lung HP content also increased with increasing radiation dose, and CL242817 significantly attenuated this response (DRF = 1.5). These data suggest that the ability of ACE inhibitors to ameliorate radiation-induced pulmonary endothelial dysfunction is not unique to captopril [Ward et al., Int. J. Radiat. Oncol. Biol. Phys. 15, 135-140 (1988)], rather it is a therapeutic action shared by other members of this class of compounds. These data also provide the first evidence that ACE inhibitors exhibit antifibrotic activity in irradiated rat lung.  相似文献   

7.
We investigated the therapeutic effect of sesamol against monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Male Sprague–Dawley rats were gavaged with a single dose of monocrotaline (90 mg/kg) to induce SOS. Sesamol (5, 10, 20, and 40 mg/kg) was subcutaneously injected 24 h after monocrotaline treatment. Control rats were given saline only. Aspartate transaminase, alanine transaminase, mast cells, CD 68+ Kupffer cells, neutrophils, myeloperoxidase, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), laminin, and collagen were assessed 48 h after monocrotaline treatment. All tested parameters, except for TIMP-1, laminin, and collagen, were significantly higher in monocrotaline-treated rats than in control rats, and, except for TIMP-1, laminin, and collagen, significantly lower in sesamol-treated rats than in monocrotaline-treated rats. In addition, liver pathology revealed that sesamol offered significant protection against SOS. We conclude that a single dose of sesamol therapeutically attenuated SOS by decreasing the recruitment of inflammatory cells, downregulating MMP-9, and upregulating TIMP-1 expression.  相似文献   

8.

Background

The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats.

Methods

CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated.

Results

Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response.

Conclusion

In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics.  相似文献   

9.
Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis.  相似文献   

10.
The administration of monocrotaline to rats causes pulmonary vascular leak within 1 wk followed in 2-3 wk by perivascular proliferation and fatal pulmonary hypertension. Possibly blocking the proliferation might block the pulmonary hypertension, providing insight into its mechanism. Because heparin, given as an antiproliferative agent, reduced hypoxic pulmonary hypertension in mice, it might also block monocrotaline-induced pulmonary hypertension. Alternatively, anticoagulation could worsen the lung injury. We found that heparin (300 and 600 U/kg sc twice daily) inhibited clotting in rats given monocrotaline but did not change the vascular leak, the right ventricular pressure, the right ventricular hypertrophy, the increased medial thickness of the pulmonary arterioles, or the production of a slow-reacting substance of anaphylaxis-like material by the lungs. A nonanticoagulant heparin fragment (2 mg/kg sc twice daily), given to avoid anticoagulation also did not influence the monocrotaline injury. Thus neither anticoagulant nor nonanticoagulant heparin either attenuated or worsened the measured effects of monocrotaline.  相似文献   

11.
Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10-300 μg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.  相似文献   

12.
A single subcutaneous injection of monocrotaline in rats provokes lung injury, inflammation, and progressive pulmonary hypertension. The specific mediators of the lung injury and inflammation and the relation of these events to the ensuing hypertensive pulmonary vascular disease are not understood. Since the monokine interleukin 1 (IL-1) has been implicated in acute inflammatory reactions, the present study tested the hypotheses that monocrotaline promotes the appearance of IL-1 in the bronchoalveolar spaces of treated rats and that accumulation of the monokine coincides temporally with development of lung injury, inflammation, and/or pulmonary hypertension. As expected, monocrotaline administration was associated with an early phase of pulmonary edema, manifest at Day 7 post-treatment as an increase in the lung wet-to-dry weight ratio, followed at Day 14 post-treatment by development of pulmonary hypertension as evidenced by progressive right ventricular hypertrophy. Lung inflammation also was present at Days 14 and 21 after monocrotaline as indicated by the accumulation of leukocytes in the bronchoalveolar lavage fluid and by an increase in the lung tissue activity of the granulocyte-specific enzyme myeloperoxidase. Interleukin 1, bioassayed in bronchoalveolar lavage fluid using the standard D10 T-cell assay system, was increased slightly at Day 4 postmonocrotaline, returned to baseline at Day 7, and was markedly elevated at Days 14 and 21 after monocrotaline treatment. These observations indicate that increases in the bronchoalveolar lavage fluid content of IL-1 bioactivity are temporally related to the evolution of monocrotaline-induced lung injury, inflammation, and pulmonary hypertension and suggest that the monokine may play a pathogenetic role in these events.  相似文献   

13.
In animals, monocrotaline induces an acute lung injury secondary to capillary endothelial damage. To date, no reports have appeared dealing with the role of prostaglandins in monocrotaline-induced injury. Our studies, in dogs, revealed that monocrotaline (30 mg/kg iv) caused an acute and persistent thrombocytopenia, lung platelet deposition, pulmonary hypertension, and increased extravascular lung water (EVLW). The pulmonary hypertensive response was biphasic. Thromboxane B2 levels were similarly biphasic, peaking at 5 min and 2 h. The levels of 6-keto-PGF1 alpha peaked at 30 min and returned to base line at 3 h. Pulmonary vascular resistance paralleled thromboxane levels. Infusion of prostacyclin (PGI2) at 50 ng X kg-1 X min-1 effectively prevented the thrombocytopenia, lung platelet deposition, pulmonary hypertension, and increased EVLW; and it decreased excess thromboxane production by 79%. These results suggest that platelet activation and lung sequestration play a role in acute lung injury due to monocrotaline, and that the resultant thromboxane production may contribute to the pulmonary hypertension. PGI2 ameliorates monocrotaline-induced injury, perhaps by preventing platelet activation.  相似文献   

14.

Renin–angiotensin system (RAS) is one of the pathophysiological mechanisms in heart failure. Recently, involvement of the kidney in the disease progression has been proposed in patients with pulmonary arterial hypertension (PAH). We hypothesized that local and systemic RAS could be the central regulators of cardiopulmonary–renal interactions in experimental monocrotaline-induced pulmonary hypertension (PH) in rats. Male 12-week-old Wistar rats were injected subcutaneously with monocrotaline (60 mg/kg). The experiment was terminated 4 weeks after monocrotaline administration. Using RT-PCR, we measured the expression of RAS-related genes in right and left ventricles, lungs and kidneys, together with indicators of renal dysfunction and damage. We observed a significantly elevated expression of angiotensin-converting enzyme (ACE) in both left and right ventricles and kidneys (P < 0.05), but a significantly decreased ACE in the lungs (P < 0.05). Kidneys showed a significant 2.5-fold increase in renin mRNA (P < 0.05) along with erythropoietin, TGFβ1, COX-2, NOS-1 and nephrin. Expression of erythropoietin correlated inversely with hemoglobin oxygen saturation and positively with renin expression. In conclusion, monocrotaline-induced PH exhibited similar alterations of ACE expression in the left and right ventricles, and in the kidney, in contrast to the lungs. Increased renal renin was likely a consequence of renal hypoxia/hypoperfusion, as was increased renal erythropoietin expression. Alterations in RAS in the monocrotaline model are probably a result of hypoxic state, and while they could serve as a compensatory mechanism at a late stage of the disease, they could be viewed also as an indicator of multiorgan failure in PAH.

  相似文献   

15.

Background

Pulmonary hypertension (PH) is a progressive disorder characterized by an increase in pulmonary artery pressure and structural changes in the pulmonary vasculature. Several observations indicate that growth factors play a key role in PH by modulating pulmonary artery smooth muscle cell (PA-SMC) function. In rats, established monocrotaline-induced PH (MCT-PH) can be reversed by blocking platelet-derived growth factor receptors (PDGF-R), epidermal growth factor receptors (EGF-R), or fibroblast growth factor receptors (FGF-R). All these receptors belong to the receptor tyrosine kinase (RTK) family.

Methods and Results

We evaluated whether RTK blockade by the nonspecific growth factor inhibitor, suramin, reversed advanced MCT-PH in rats via its effects on growth-factor signaling pathways. We found that suramin inhibited RTK and ERK1/2 phosphorylation in cultured human PA-SMCs. Suramin inhibited PA-SMC proliferation induced by serum, PDGF, FGF2, or EGF in vitro and ex vivo. Treatment with suramin from day 1 to day 21 after monocrotaline injection attenuated PH development, as shown by lower values for pulmonary artery pressure, right ventricular hypertrophy, and distal vessel muscularization on day 21 compared to control rats. Treatment with suramin from day 21 to day 42 after monocrotaline injection reversed established PH, thereby normalizing the pulmonary artery pressure values and vessel structure. Suramin treatment suppressed PA-SMC proliferation and attenuated both the inflammatory response and the deposition of collagen.

Conclusions

RTK blockade by suramin can prevent MCT-PH and reverse established MCT-PH in rats. This study suggests that an anti-RTK strategy that targets multiple RTKs could be useful in the treatment of pulmonary hypertension.  相似文献   

16.
Serum copper concentration was evaluated as an index of lung injury (monitored by lung prostacyclin production) with respect to the effects of time, dose, dose fractionation, and penicillamine dose modification in rats irradiated to the right hemithorax. Both lung PGI2 production and serum Cu concentration increased with increasing 60Co gamma-ray dose in animals sacrificed 2 or 6 months postirradiation, and the highest values for both responses were observed at the latter autopsy time. At 2 months postirradiation, the elevations in lung PGI2 production and serum Cu concentration also were spared similarly when total radiation doses were delivered in five equal daily fractions as compared to single doses. Finally, the ability of D-penicillamine to ameliorate the radiation-induced hyperproduction of PGI2 by rat lung was accompanied by an attenuation of the dose-dependent increase in serum Cu concentration at 2 months postirradiation in the drug-treated rats. In contrast, serum iron concentration was independent of time, dose, and penicillamine. At 2 months after irradiation, there also was a dose-dependent increase in lung hydroxyproline (collagen) content, the magnitude of which correlated closely with serum copper concentration in individual animals. Thus serum copper concentration is an accurate and minimally invasive index of lung injury in rats irradiated to the hemithorax and can predict lung hydroxyproline (collagen) content in individual irradiated rats.  相似文献   

17.
We evaluated the possible contributory role of hypoxia in the development of monocrotaline-induced pulmonary hypertension. Male Sprague-Dawley rats were injected subcutaneously with monocrotaline (60 mg/kg) or saline in controls and were kept in oxygen-enriched (inspired O2 fraction of 0.35) or compressed air chambers. After 21 days, rats were anesthetized while spontaneously breathing room air, hemodynamic parameters and arterial blood gases were measured, and animals were killed. Right ventricular peak systolic pressures (RVPP), right ventricular-to-left ventricular plus septal weight ratios (RV/LV + S), hematocrits, lung dry weight-to-body weight ratios, and medial thickness of pulmonary arteries were significantly reduced in monocrotaline-injected rats exposed to mild hyperoxia compared with air. The air-exposed monocrotaline-injected rats had significantly more arterial hypoxemia than the other groups, and mild hyperoxia had no effect on any of the measured variables in saline-injected rats. To determine whether the effects of mild hyperoxia occurred early or late after monocrotaline injection, we moved separate groups of rats from air to mild hyperoxia and vice versa 10 days after monocrotaline injection. After 21 days, significant reductions in RVPP and RV/LV + S occurred only in rats exposed to mild hyperoxia during the latter 11 days after injection. Our findings suggest that hypoxia contributes to the development of pulmonary hypertension relatively late after monocrotaline injection in rats but that it does not influence the early injury.  相似文献   

18.
C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice. Specifically, strains prone to radiation-induced pulmonary fibrosis (C57BL/6J, C57BL/10J) exhibit only half as much lung ACE and PLA activity as do strains resistant to fibrosis (CBA and C3H).  相似文献   

19.
Dexfenfluramine (Dex), an appetite suppressant and serotonin reuptake inhibitor, is associated with pulmonary vascular disease (PVD) in some patients. The variability might be related to undetermined genetic abnormalities interacting with factors such as gender, weight loss, and vascular injury. We, therefore, assessed the effect of Dex (5 mg. kg(-1). day(-1)) in female obese rats, designated JCR:LA-cp or cp/cp; in lean rats, designated (+/?); and in normal Sprague-Dawley (S-D) rats under control conditions or after endothelial injury induced by monocrotaline (60 mg/kg). Pulmonary arterial pressure, right ventricular hypertrophy, percent medial wall thickness of muscular arteries, and muscularization of peripheral arteries were assessed as indexes of PVD. Although Dex reduced weight gain in cp/cp and S-D rats (P < 0.05 for both), it did not cause PVD. Moreover, PVD in S-D rats after monocrotaline injection was paradoxically ameliorated by Dex (P < 0.05) despite induction of pulmonary artery elastase (P < 0.05), which we showed is critical in inducing experimental PVD. Thus it is possible that Dex is concomitantly offsetting the sequelae of elastase activity.  相似文献   

20.
Activation of the coagulation system and increased expression of tissue factor (TF) in pulmonary fibrosis associated with acute and chronic lung injury have been previously documented. In the present study, we evaluated the effect of TF inhibition with intratracheal gene transfer of tissue factor pathway inhibitor (TFPI), a potent and highly specific endogenous inhibitor of TF-dependent coagulation activation, in a rat model of bleomycin-induced lung fibrosis. Significant lung fibrotic changes as assessed by histologic findings and hydroxyproline content, and increased procoagulant activity and thrombin generation in bronchoalveolar lavage fluid were detected in rats after intratracheal injection of bleomycin. Intratracheal administration of an adenovirus vector expressing TFPI significantly decreased bleomycin-induced procoagulant and thrombin generation resulting in a strong inhibition of pulmonary fibrosis. TFPI-overexpression in the lung was associated with a significant reduction in gene expression of the connective tissue growth factor, a potent profibrotic growth factor. This is the first report showing that direct inhibition of TF-mediated coagulation activation abrogates bleomycin-induced pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号