首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antigenic specificities of complement factor H from mice were studied serologically. In addition to previously reported allotypes, referred to as H.1 and H.2, a new allotype of complement factor H, H.3, was identified in the BFM/2Ms strain derived from European wild mice. Using three different alloantisera raised against the various mouse factor H allotype, a serological survey of the common laboratory strains and wild-derived strains of Mus musculus and its relatives, Mus spretus, Mus spretoides, and Mus spicilegus was carried out. All of the common laboratory strains examined in this survey had the H.1 allotype except for STR/N which had H.2. The geographical distributions of factor H allotypes in M. musculus were specific to the subspecies. Mice derived from Mus musculus domesticus and Mus musculus castaneus had the H.1 allotype. Mice derived from M. m. musculus, Mus musculus bactrianus, and Mus musculus molossinus had the H.2 allotype. Only BFM/2Ms and BFM/1Mpl strains derived from M. m. domesticus had the novel H.3 allotype. Sera of mice from strains derived from M. spretoides and M. spicilegus cross-reacted with H.2-specific antiserum, and those from M. spretus cross-reacted with H.3-specific antiserum.  相似文献   

2.
We have investigated 67 primers designed by Dr. J. Todd and co-workers to amplify microsatellites sequences in the mouse. We report on additional polymorphisms concerning seven laboratory inbred strains, complementary to those already published. We include the survey of three independently derived strains of Mus spretus: SPE/Pas, SEG/Pas and SPR/Smh. SPE/Pas and SEG/Pas are very close (3% polymorphism), whereas the third one, (SPR/Smh), is very different from the other two strains (33% polymorphism). Seventy-four to 84% of the microsatellites analyzed in this study are polymorphic between C57BL/6Pas and Mus spretus strains. By comparison, 36–46% are polymorphic between laboratory inbred strains involved in established sets of recombinant inbred strains. A strain derived from Mus musculus musculus (PWK/Pas) was found to be very different from both C57BL/6Pas (70% polymorphism) and SPE/Pas (82% polymorphism). These results emphasize the interest of using Mus musculus musculus inbred strains to establish interspecific crosses, particularly when considering their breeding performances.  相似文献   

3.
A 7-bp deletion in the Cd4 gene, present in the strain MOLF/Ei of Mus musculus molossinus and absent in laboratory mouse strains (Mus musculus musculus), provided the means to distinguish the parental origin of the Cd4 alleles expressed in single cells of F1 (AKR × MOLF/Ei) and F1 (Balb/C × MOLF/Ei) hybrids. Single-cell RT-PCR showed that the individual CD4+ lymphocyte expresses either the maternal or the paternal Cd4 allele, never both. In situ hybridization proved that Cd4 alleles replicate asynchronously, as expected in the case of genes expressed monoallelically.  相似文献   

4.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

5.
Ten single, arbitrarily designed oligodeoxynucleotide primers, with 50–70% (G+C) content, were used to amplify by polymerase chain reaction (PCR) sequences with DNA templates from several mouse species (Mus spretus, Mus musculus musculus, and Mus musculus domesticus), as well as DNA from the laboratory rat (Rattus norvegicus). Eight of these ten primers, used either individually or associated in pairs, generated a total of 13 polymorphic products which were used as genetic markers. All of these polymorphic sequences but one were mapped to a particular mouse chromosome, by use of DNA panels prepared either from interspecific backcross progeny of the type (C57BL/6 x Mus spretus)F1 x C57BL/6 or DNA samples prepared from two sets of recombinant inbred (RI) strains (AKXL and BXD). Six rat-specific DNA segments were also assigned to a particular chromosome with DNA panels prepared from 18 rat/mouse somatic cell hybrids segregating rat chromosomes. From these experiments we conclude that, under precisely standardized PCR conditions, the DNA molecules amplified with these arbitrarily designed primers are useful and reliable markers for genetic mapping in both mouse and rat.  相似文献   

6.
Genomic DNA from twelve laboratory mouse strains, in addition to 21 wild-derived strains belonging to different taxa (Mus musculus domesticus, Mus musculus musculus, Mus spretus, Mus macedonicus, a and Mus spicilegus) and four mouse strains that are evolutionarily more distant, were analyzed by Southern blot for polymorphism of the Ig heavy chain constant region isotype (Igh-C) and for the distribution of the duplicated Igh-1 (C2) haplotype. Distinct allelic forms of each Igh-C locus could be defined by restriction fragment length polymorphism (RFLP). In laboratory mouse strains RFLP proved to be more sensitive in the detection of Igh-4 (C1) alleles than serological methods. Taq I digestion allowed the definition of two alleles in the Igh-8 (C3) locus, which is absolutely conserved at the protein levels. More extensive RFLP could be found in wild strains belonging to the subgenus Mus and in the evolutionarily more distant Mus species belonging to other subgenera. In previous studies we have shown that the Igh-1 locus is duplicated in M. m. musculus subspecies. We now extend this observations to the wild mouse strains belonging to M. spicilegus and M. macedonicus species and to the evolutionarily more distant wild mouse strain Mus pahari (subgenus coelomys), which is thought to have diverged from domestic mice about 5 million years ago. In addition, we found a similar RFLP pattern in ten of 18 wild mice trapped in India, suggesting that the haplotype containing the two Igh-1-like genes, organized in tandem as distinct isotypes, is widely spread in natural populations. The evolution of murine Igh-C-encoded isotypes is also discussed. Correspondence to: P.-A. Cazenave.  相似文献   

7.
8.
MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome.  相似文献   

9.
Two subspecies of the house mouse, Mus musculus domesticus and Mus musculus musculus, meet in a narrow contact zone across Europe. Mice in the hybrid zone are highly admixed, representing the full range of mixed ancestry from the two subspecies. Given the distinct morphologies of these subspecies, these natural hybrids can be used for genomewide association mapping at sufficiently high resolution to directly infer candidate genes. We focus here on limb bone length differences, which is of special interest for understanding the evolution of developmentally correlated traits. We used 172 first‐generation descendants of wild‐caught mice from the hybrid zone to measure the length of stylopod (humerus/femur), zeugopod (ulna/tibia) and autopod (metacarpal/metatarsal) elements in skeletal CT scans. We find phenotypic covariation between limb elements in the hybrids similar to patterns previously described in Mus musculus domesticus inbred strains, suggesting that the hybrid genotypes do not influence the covariation pattern in a major way. Mapping was performed using 143,592 SNPs and identified several genomic regions associated with length differences in each bone. Bone length was found to be highly polygenic. None of the candidate regions include the canonical genes known to control embryonic limb development. Instead, we are able to identify candidate genes with known roles in osteoblast differentiation and bone structure determination, as well as recently evolved genes of, as yet, unknown function.  相似文献   

10.
A genetic linkage map for mouse Chromosome (Chr) 4 (MMU 4) has been constructed with an intersubspecific backcross between the C57BL/KsJ strain homozygous for the misty (m) coat color locus and the inbred Mus musculus musculus Czech II strain. Several recently developed PCR-based simple sequence length polymorphism (SSLP) markers have been intercalated among genebased markers including six anchor loci on mouse Chr 4 to assemble this map. Marker order and genetic distances are similar to the composite genetic linkage map compiled from crosses between a variety of other inbred and feral mouse strains. Transmission ratio distortion in favor of feral alleles is apparent for a region of distal MMU 4. In addition, the misty phenotype is more fully penetrant in the present backcross than in other reported interspecific and intersubspecific crosses. Backcrosses employing inbred Mus musculus musculus strains may allow reliable phenotyping and mapping of mouse mutations displaying complex phenotypes with incomplete and/or ambigious penetrance on other feral genetic backgrounds.  相似文献   

11.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   

12.
小家鼠和实验小鼠遗传特性的比较研究   总被引:1,自引:0,他引:1  
金玫蕾  鲍世民 《兽类学报》1992,12(3):230-236
本文用同工酶电泳法、微量细胞毒法和免疫双向扩散法对我国4个动物地理区的6个采集点的156个小家鼠(Mus musculus)进行了遗传特性的调查。结果发现:在全部被测的13个位点中,小家鼠在7个位点上存在着多种实验小鼠中罕见的基因组成;而不同动物地理区和亚区的小家鼠的遗传特性又各不相同。从而指出将小家鼠的特有基因导入实验小鼠,培育新品系的重大意义。  相似文献   

13.
Rat microsatellite primers were used for detection of homologous DNA segments in the mouse species (Mus laboratorius, Mus musculus musculus, and Mus spretus). Twenty five (16.3%) of 153 rat primer pairs amplified specific DNA segments, when genomic DNA of mice was used as a template in the polymerase chain reaction (PCR). Size variation among inbred strains of mice was found for 13 DNA segments (8.5%). Eight out of the 13 polymorphic DNA segments were mapped to a particular chromosome with two sets of recombinant inbred strains, AKXL or BXD. Similarly, mouse microsatellite primers were used for detection of homologous DNA segments in rats (Rattus norvegicus). Twenty (12.0%) of 166 primer pairs amplified specific DNA segments from rat genome. Size variation among inbred strains of rats was found for seven DNA segments (4.2%). Eleven of these 20 DNA segments were mapped with a rat x mouse somatic cell hybrid clone panel and/or linkage analysis by use of backcross progeny. Our results suggest that the mapped DNA segments are really homologs between mouse and rat. These polymorphic DNA segments are useful genetic markers.  相似文献   

14.
Hybrid zones between genetically diverged populations are widespread among animals and plants. Their dynamics usually depend on selection against admixture and dispersal of parental forms in the zone. Although indirect estimates of selection have been the target of many studies, dispersal has been neglected. In this study we carried out open field experiments to test whether males of two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus, differ in their propensity to disperse and in their character of exploration. We tested wild‐caught males and males of two wild‐derived inbred strains. In addition, we examined reciprocal F1 crosses to test the prediction that these hybrids display intermediate behaviours. We revealed that M. m. musculus males were less hesitant to enter the experimental arena than were M. m. domesticus males, but once inside the arena their movements were more timid. F1 males differed from both parental strains, with longer latencies to enter the arena, but explored the arena in a similar fashion as the M. m. domesticus males, thus displaying transgressive behavioural phenotypes. These results contribute to our knowledge of behavioural divergence between the mouse subspecies, and add a new facet to the study of speciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●●, ●●–●●.  相似文献   

15.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

16.
We tested 96 microsatellites and 10 single nucleotide polymorphisms for their allelic distribution in two subspecies of the house mouse, Mus musculus musculus and M. m. domesticus. Sixty‐two microsatellites discriminated strain‐specific differences among nine wild‐derived ‘musculus’ and ‘domesticus’ and three ‘classical’ laboratory strains. For efficient genotyping, we optimized multiplex conditions using five microsatellites per polymerase chain reaction. All 10 single nucleotide polymorphisms were also optimized for simultaneous analysis in one reaction using SNaPshot multiplex. The uniform distribution of markers on autosomes and on the X chromosome makes these panels potentially useful tools for quantitative trait loci mapping of wild house mice.  相似文献   

17.
Intracisternal-A-particle-related envelope-encoding (IAPE) proviral elements in the mouse genome encode and express an envelope-like protein that may allow transmission of IAPEs as infectious agents. To test IAPE mobility and potential transmission in mice, we have analyzed the distribution of IAPE elements in the genomes of Mus spretus and Mus musculus inbred strains and wild-caught animals. Potential full-length (IAPE-A) proviral elements are present as repetitive copies in DNA from male but not female animals of M. musculus inbred strains and Mus musculus castaneus. Analysis of IAPE-cellular junction fragments indicates that fixation of most IAPEs in the germ line occurred in M. musculus and M. spretus after speciation but before M. musculus inbred strains were derived.  相似文献   

18.

Background  

The Mus musculus musculus/M. m. domesticus contact zone in Europe is characterised by sharp frequency discontinuities for sex chromosome markers at the centre of wider clines in allozyme frequencies.  相似文献   

19.
We have previously shown that mice expressing Hprt a allele(s) have erythrocyte hypoxanthine phosphoribosyltransferase (HPRT) levels that are approximately 25-fold (Mus musculus castaneus) and 70-fold (Mus spretus) higher than in mice that express the Hprt b allele (Mus musculus domesticus; C57BI/6J; C3H/HeHa), and that these differences in erythrocyte HPRT levels are due to differences in the turnover rates of the HPRT A and B proteins as reticulocytes mature to erythrocytes. We show here that: the taxonomic subgroups of the genus Mus are essentially monomorphic for the occurrence of either the Hprt a or the Hprt b allele, with Hprt a being common in the aboriginal species (M. spretus, Mus hortulanus and Mus abbotti) and in several commensal species (Mus musculus musculus, M. m. castaneus, Mus musculus molossinus), while Hprt b is common in feral M. m. domesticus populations as well as in all inbred strains of mice tested; in all these diverse Mus subgroups there is a strict association of Hprt a with high and Hprt b with low levels of erythrocyte HPRT; and, the association between the occurrence of the Hprt a allele and elevated erythrocyte HPRT levels is retained following repeated backcrosses of wild-derived Hprt a allele(s) into the genetic background of inbred strains of mice with the Hprt b allele. Collectively, these observations indicate that the elevated and low levels of erythrocyte HPRT are specified by differences in the Hprt a and b structural genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In most species that reproduce sexually, successful gametogenesis requires recombination during meiosis. The number and placement of crossovers (COs) vary among individuals, with females and males often presenting the most striking contrasts. Despite the recognition that the sexes recombine at different rates (heterochiasmy), existing data fail to answer the question of whether patterns of genetic variation in recombination rate are similar in the two sexes. To fill this gap, we measured the genome-wide recombination rate in both sexes from a panel of wild-derived inbred strains from multiple subspecies of house mice (Mus musculus) and from a few additional species of Mus. To directly compare recombination rates in females and males from the same genetic backgrounds, we applied established methods based on immunolocalization of recombination proteins to inbred strains. Our results reveal discordant patterns of genetic variation in the two sexes. Whereas male genome-wide recombination rates vary substantially among strains, female recombination rates measured in the same strains are more static. The direction of heterochiasmy varies within two subspecies, Mus musculus molossinus and Mus musculus musculus. The direction of sex differences in the length of the synaptonemal complex and CO positions is consistent across strains and does not track sex differences in genome-wide recombination rate. In males, contrasts between strains with high recombination rate and strains with low recombination rate suggest more recombination is associated with stronger CO interference and more double-strand breaks. The sex-specific patterns of genetic variation we report underscore the importance of incorporating sex differences into recombination research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号